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Preface

The purpose of this study was to investigate, develop, and implement cooperative
decisibn—making behaviors in autonomous agents of an air combat simulation by using a
knowledge-based, expert system. If you thought that declaration had a lot of information,
you're right. The idea of mixing human behaviors, air combat scenarios and computer
programming seemed daunting to me when I started this project and reading it again still
gives me the "willies". I wrote this thesis with three people in mind. To the computer
engineer -- this document is primarily for you, so it contains complex descriptions of how
the system works. To the engineering student -- in particular to those of you at AFIT who
might develop this simulator further, I include pictures. To the air combat pilot -- I wrote
this document so that some correlation could be made to textbook descriptions of air
combat. Not being a pilot myself gave me an objective viewpoint of tactics and strategy,
but I'd still prefer the experience instead of the study.

My thanks to Captain George Hluck who partnered me in developing a combat flight
simulator. George developed the underlying architecture for a one versus one decision-
making model. I developed multi-aircraft scenarios and cooperative decision models.
Together we made a combat flight simulator capable of operating in many scenarios.

Thanks to my advisor Major Gregg Gunsch who kept me motivated and focused
toward my goal. A word of thanks to Lieutenant Dan Gisselquist, who helped me work
through the mathematical formulas in our simulator and led the way in developing an
interface to the Red Flag terrain simulator used in the Graphics Lab. Also, to Steve
Sheasby and Captain Brian Stoltz who connected us into a Red Flag simulator and helped
identify improvements for our simulator. Having a visual display of my efforts was

inspiring and gratifying.




And special thanks to my wife Lynne and son Gareth for putting up with my long
hours at work. I'll make up for the time we've lost.

Dean P. Hipwell
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Abstract

The purpose of this study was to investigate, develop, and implement cooperative
decision-making behaviors in an air combat simulation by using a knowledg > based
system. The specific aim was to model pilot decision processes during fighter aircraft
combat scenarios. Since fighter combat typically involves many aircraft and not simply
one versus a single enemy, cooperative decision-making is a critical part of realistic air
combat simulation. Knowledge-based systems seemed well suited for this task because of
built in features such as inference engines and rule based constructs. Writing an aircraft
simulator, however, required definition of aircraft, basic flight maneuvers, and many other
parameters including one versus one decision-making procedures. Cooperative decision-

making behaviors were developed as extensions to the one versus one model.

This thesis addresses the specific problem of generating autonomous forces for
inclusion in the Advanced Research Projects Agency (ARPA) Distributed Interactive
Simulation (DIS) system. A 1993 survey by the Defense Modeling and Simulation Office
noted the lack of implementations addressing Air Force platforms and the heavy emphasis
on individual platform behaviors. The survey highlights problem areas including flexible
and realistic behaviors within entities, real-time planning, and arbitration control schemes,
as drawbacks to current implementations. The simulation system presented in this thesis
addresses the problem of realistic behaviors and offers a method of modeling pilot decision

processes rather than platform behaviors
The simulation system is based on phased control of a blackboard architecture in an

object oriented design. Modular knowledge bases contain rules to process information

used by fighter pilots in conducting aerial combat. Data is stored vrithin agent class

Xiv




definitions and shared between agents. Message passing coordinates the actions of
cooperative agents. Phase control divides the entire rule base into smaller rule groupings
to concentrate processing on essential calcuiations. Rule bases offer a selection of
strategies, tactics, and maneuvers from which agents choose to fit specific engagements.

The result is a h.ghly flexible architecture that supports cooperative problem solving.

Cooperative decision-making in this simulation is leader-follower based. A
designated team leader makes decisions and commands team members depending on
circumstances. Cooperative agents share the workload in assessing threats and planning
routes within the simulation environment. Leaders make an initial decision, but followers
pick up leader responsibilities when the leader falls out of position or is destroyed

altogether.

The simulation system was drveloped using the C Language Integrated Production
System (CLIPS) Object Oriented Language. The system operates on UNIX workstations,
DOS compatibles, and Macintosh computers. Currently, the system generates location
data files which can be used to drive simulations on a Red Flag Terrain simulator, but

there is potential for interactive DIS compatibility.

The simulator described in this thesis provides an architecture and design for
modeling combat pilot decision processes. It includes methods for agent coordination and
cooperative decision-making. The result is an air combat simulator called Pilot Decision

Phases in CLIPS, or PDPC.
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DEVELOPING REALISTIC COOPERATIVE
BEHAVIORS FOR AUTONOMOUS AGENTS IN AIR
COMBAT SIMULATION

1. Introduction

The purpose of this study was to investigate pilot decision-making processes and
behavior patterns and implement those behaviors in air combat simulation. Research at
the Air Force Institute of Technology (AFIT) led to au implementation of a framework for
air combat simulation (Dyer and Gunsch, 1993). However, the actions and movements of
adversary agents within the simulaticn did not realistically depict pilot tactics and
strategies. Turns occurred instantaneously and at the maximum turning rate defined for
each agent rather than gradually and smoothly. Weapons delivery took place at the
earliest opportunity rather than at optimal points in an attack scenario. Planning was
minimal and "deep" reasoning in decision-making was non-existent. The simulator
mimicked basic flight motions, but could not conduct complex maneuvers. This thesis
presents an air combat simulation which uses models of pilot behavior to realistically
portray air combat scenarios. The simulation was developed using the C Language
Integrated Production System (CLIPS) and is called Pilot Decision Phases in CLIPS
(PDPC).

1.1 Background

1.1.1 Distributed Interactive Simulation. At present, the Advanced Research

Projects Agency (ARPA) is developing a war game simulation in a program called




Distributed Interactive Simulation, or DIS (IST, 1992a). The DIS program wiil create
synthetic battlefields by connecting computers and simulators through a nationwide
communications network. Operators at diverse locations will climb into simulators and
engage each other in mock combat. Through training in various scenarios, military
personnel will gain battlefield experience in a safe and cost effective way.

A problem in scheduling mock combat exercises is in coordinating the needs of
participants, or players. A scenario pitting tank battalions from Fort Bragg against fighter
wings from Shaw Air Force Base would require detailed plans stating who, what, when,
where, and why. More importantly, battle simulations will need an administrator to
dictate when to stop and evaluate training progress. Simulations are controlled exercises
that demand occasional stopping points for trainees to benefit from an analysis of their
actions, or mistakes, made during battle. Coordinating adversaries in order to achieve
some benefit may detract from the training value of DIS.

A second problem is a matter of scale: there may not be enough tank or fighter
aircraft simulators to accurately depict realistic battlefield engagements. Reenacting
battles of the Persian Gulf war would require hundreds of tank and aircraft simulators.
Both friendly and enemy forces would need to be created in each scenario. Even if
sufficient numbers of players were available, sufficient numbers of simulators may not be.

A third problem addresses the practical issue of communicating simulation data. To
achieve realistic scenarios, massive amounts of computer data must be transferred to keep
all players up to date. Even with state of the art communications technology, transmission
delays of one-tenth of a second could mean the difference between hitting and missing a
target. Subsequent arguments between players about who "shot" whom first would
reduce the training effectiveness of DIS.

1.1.2 Autonomous Forces. Autonomous forces, also called computer generated

forces, or CGF, are computer depictions of human organizations and human-controlled
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machines. They are created using computer images and manipulated using computer
algorithms to imitate the appearance, actions and behaviors of human-controlled machines.
Autonomous forces within DIS are analogous to computer games where a s.ngle user
competes against images presented on a computer screen. The concept of CGF goes
farther than simple target shooting exercises. CGF will employ the tactics and strategies
of human players without being under human control. CGF will eliminate scheduling
difficulties because players will create battlefield engagements at any time. CGF will also
provide a rich and large scale battlefield environment because players can depict large
numbers of aircraft or tanks (Downes-Martin, 1992). By consolidating message traffic,
CGF could reduce data transmissions requirements. CGF conveniently solves some DIS
problems, but to enhance training experiences CGF must fool players into thinking they
are competing against human players.

1.1.3 Realistic Behaviors in Autonomous Forces. Within DIS, forces generated
by computer must behave realistically. One of the prime goals of CGF is to fool human
players into thinking they are competing against, or with, other human players and not
computers (I"ownes-Martin, 1992). Adversary aircraft should select tactics and perform
maneuvers as if human pilots were at the controls. Collections of gdversaries should move
in unison across battlefields in coordinated efforts to attain strategic or tactical advantage.
Friendly computer forces should provide battalion commanders the experience of seeing
orders carried out in terms of massed movements. Sudden or erratic changes may reveal a
computer generated player to an adversary. Human players could then label aircraft that
make sharp turns as CGF and either defeat or avoid them. Ultimately, transitions between
human and computer generated players should be transparent. If a human player decided
to quit and walk away right in the middle of a fight, a computer generated player should
be able to take control so that other players do not suspect a change occurred. Realistic

depiction of human action is a key factor to successfully implementing CGF.
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1.1.4 Cooperative Behaviors. Beyond achieving realism, human players must
perceive CGF as cooperative teammates. Military operations depend on units acting as a
cohesive team. Fighter pilots usually have a wing man. Tanks operate in battalions, or at
the very least, in patrols. Current training simulators provide training for solitary warriors:
a single pilot competing against adversaries as if no other friendly forces exist. In real
battlefield environments, teamwork may dictate the success or failure of a mission. The
actions of team members cooperating with each other can prove more effective than team
members acting individually. To complete the image of realism, computer generated

players must demonstrate cooperative behaviors and play team roles.

1.2 Problem Statement

The intent of this thesis was to investigate, develop, and implement cooperative
behaviors in autonomous air combat agents for operation within the ARPA Distributed
Interactive Simulation program. The scope of this thesis is stated in the following

hypothesis.

Cooperative behaviors in autonomous agents of an air combat
simulation can be implemented using universal reactive plans in a

modularized knowledge-base system.

1.3 Scope

1.3.1 Fighter Combat Simulation. There are many aerial combat simulation
systems, both military and commercial. Military versions are extensive, offering real-time

graphics and requiring heavy duty computers. Commercial products are dominated by
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"video" games. This thesis does not constitute a plan to build aeriai combat simulators nor
interfaces to these systems. Only the decision process was investigated and implemented.
Parameters of this decision process include strategy and tactics, threat assessment,
maneuver selection and other considerations.

1.3.2 Primary Sources. This thesis presents an architecture and a design for a
fighter pilot model. The model is based primarily on two documents. Fighter Combat,
Tactics and Maneuvering, by Robert L. Shaw , defines and illustrates key concepts of air
combat (Shaw, 1985). Pilot's Decision Definition and Analysis, a report prepared by
Titan Systems, Inc. of La Jolla, Calif. for the Pilot's Associate Program Office at the Air
Force Wright Acronautical Laboratories, defines key parameters and categorizes decision
stages of air combat (Titan, 1986).

1.3.3 Limits of This Thesis. The task was one of encoding the decision process of
fighter pilots cooperatively engaged in aerial combat. The PDPC simulator partially
implements the concepts described in source documents. Combat simulation scenarios
included one versus one, two versus one, and two versus two engagements. The one
versus one scenario contrasts agent use of cooperative rules in two versus one and two
versus two scenarios. This thesis does not illustrate engagements consisting of more than

four agents.

1.4 Approach

1.4.1 Hierarchical Phase Control. The basic approach was to model the sequence
of fighter pilot decisions as a series of phases. This approach is suggested by Giarratano
and Riley in Expert Systems, Principles and Programming (Giarratano and Riley,
1989:455). Small rule-bases define events and transitions in each phase. A simple

architecture connects consecutive phases as a sequential set of small rule-bases. The
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overall goal is to achieve some phase of operation and make decisions based on that
phase. Once an agent achieves a phase state, the only decisio. left is how to get out of
that phase. Agents take actions and make plans during transitions between phases rather
than while in the phase.

1.4.2 Rule-Based System. A rulz-based system seemed appropriate since much of
aerial combat can be explained in terms of rules. There are rules of flight, rules of
engagement, rules of combat, and even the behaviors of a chain of command can be laid
out in rules. The PDPC uses rules to capture the knowledge and experience needed in
combat pilot decision processes.

1.4.3 Blackboard Model of Software Design. The basic design approach used the
blackboard concept. Information usec by fighter pilots during aerial combat is extensive
and competes for attention (Funk and Lind, 1992). Pilots learn to ignore less important
information in favor of critical information. Information remains accessible when a pilot
needs it, but does not, or should not, interfere with the ability to fly a plane. A blackboard
approach models pilot information flow by keeping data available when needed. From an
implementation standpoint, data flowing through the PDPC could be monitored and newly
encoded rules could easily be tied to necessary data as domain expertise was added.

1.4.4 Object-Oriented Design. The final design approach used object-oriented
techniques (Rumbaugh, 1991). Initial designs required massive amounts of memory.
Tests using a strict blackboard design required over 50 megabytes of storage to complete
a single loop of a simple planned route. Converting to an object-oriented scheme
eliminated memory requirement problems, simplified data access structures, and allowed
more agents as the PDPC simulator expanded.

1.4.5 The C Language Integrated Production System. The simulation described
in this thesis is written in the C Language Integrated Production System, or CLIPS. A

rule-based system, CLIPS has a built-in inference engine to deliberate over rules and a
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data structure to implement a blackboard. This saved development time in building an
inference engine and blackboard. CLIPS has the capability of calling system and foreign
language algorithms. Integrating a final product into another language would be
simplified. CLIPS constructs can be embedded into other applications. Constructs
compile into C language constructs, so porting versions into other applications could be
accomplished. CLIPS constructs can also be embedded into Ada programs, so future
developments could be tested with Ada language programs. CLIPS has an object-oriented
capability which allows future modification and e);pansion. Having the "look and feel" of
the artificial intelligence language, Lisp, CLIPS is a powerful tool for rapid prototype
software development. (CLIPS, 1993)

Key features of CLIPS suitable for this thesis included a fact list, agenda, and
modular development capability. The fact list provided a built-in blackboard system.
Statements about conditions within the PDPC simulator were stored on the fact list for
later reference. The agenda listed rules eligible for firing. Rules having satisfied predicate
conditions were placed on the agenda and executed one at a time. The agenda allowed
different forms of conflict resolution including depth first, breadth first, or even means-
ends analysis. Prioritized rules caused the agenda to behave as a priority queue while rules
of equal priority used the agenda as a stack. The latest version of CLIPS, version 6.0,
allowed modularized rule bases. Rules that applied to specific situations in one case
would not be considered in other cases. For example, takeoff and landing rules would not
apply during engagements. A modular rule base quickly responded to simulation events
since unnecessary rules were not even considered. Key features of CLIPS made it an ideal
choice for this research project.

1.4.6 Hardware Development System. The PDPC simulator was developed on
several platforms including Sun Sparcstations, 386 and 486 PCs, and Macintosh systems.

Performance varied on each system, but PDPC transported without major code revision.

1-7




1.5 Assumptions

1.5.1 Fighter Combat Scenarios. This thesis is an exploration of pilot strategies
and tactics used in two versus one and two versus two aerial combat. Efforts concentrate
on team concepts such as role playing, role switching, and planning in multiple agent
scenarios. A thesis by Hluck, explores one versus one strategy and tactics (Hluck, 1993).
Cooperative behaviors among larger groups would need to be fully explored before
realistic agents could operate autonomously on a system such as DIS.

1.5.2 Simulation Environment. Players operate in an arbitrary three-space
environment as defined in Section 3.2.2.1. Agents within the simulation have no concept
of terrain or obstacles.

1.5.3 Network Support. Although the agents are intended for use on DIS, an
interface to DIS broadcasting media was not implemented. Fullv interoperable network

capability has been left for follow-on development.

1.6 Thesis Overview

This thesis contains six chapters and four appendices. Chapter Two is a historical
development of research in the areas of planning, machine-learning, and cooperative
systems as applied to autonomous agents. Chapter Three discusses the methodology used
to develop the PDPC simulator. Chapter Four details implementation of the PDPC.
Chapter Five reviews results of tests and simulation runs. Chapter Six presents
conclusions and recommendations.

Four appendices define parameters and procedures used to implement the PDPC.
Appendix A defines mathematical formulae used in the PDPC flight model. Appendix B

identifies key parameters and terms used in PDPC rule modules. Appendix C elaborates
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the pilot decision process by using a questionnaire measuring pilot situation awareness.
Appendix D provides class slot definition for objects within the PDPC simuiator.

A copy of the code for the PDPC is available from the following office:

AFIT/ENG
Atrtificial Intelligence Program
Wright-Patterson AFB, OH 45433

The CLIPS development environment can be obtained through the LinCom Corporation,
Software Technology Branch Help Desk at (713) 286-8919 or by writing:

STB Products Help Desk
LinCom Corporation

1020 Bay Area Boulevard, #200
Houston, Texas 77058-2628

CLIPS is free to NASA, USAF, and their contractors for use on NASA and USAF

projects.

1.7 Summary

This thesis presents a prototype expert system capable of executing cooperative
behaviors in strategy and tactics during simulated aerial fighter combat scenarios. The
system implements some of the decision processes used by combat fighter pilots. The
basic approach divides decision processes into sequential phases with modular knowledge-
bases defining the events and transitions within each phase. The simulation system was
written in the rule-based language called CLIPS and was used primarily on PC and
Sparcstation machines. For these reasons, 1 titled the simulator Pilot Decision Phases in

CLIPS, or PDPC. The term PDPC is used throughout the remainder of this thesis.
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2. Historical Development

Under the DIS program, computer generated agents will act as enemy, friendly, or
even neutral participants (Downes-Martin, 1992). Since a range of scenarios wiil be
executed under DIS, agents will function either singly or as part of a team. Individual
agents need to know basic flight maneuvers as a baseline of performance. Agents then
need to know how to put maneuvers together to execute combat tactics. Beyond tactics,
an agent will need to know how to select tactics to fulfill a strategy. These layers of
knowledge form a hierarchy that can be used to build an architecture. All three layers
change when considering a team of aircraft as opposed to a single fighter. Although basic
maneuvers stay the same, the choice of maneuvers and the choice of which agent performs
a maneuver becomes critical to achieving a given goal. Tactics alsc gain variety in multi-
aircraft scenarios since opposing aircraft may react differently to two attackers rather than
to a single attacker (Shaw, 1985:Ch 5). Strategy, in the global sense, does not vary
between combat aircraft on the same team since the goals of lead pilots are inherited by
their partners. In an individual sense, strategy can be thought of as a prepared estimate of
expected tactics and in this sense could vary from single to multiple aircraft engagements.
Cooperative behaviors allow independent agents to act as a team in solving problems.

This chapter explores the extent of research in developing cooperative behaviors for
computer generated agents. Computer generated agents are computer programs that
communicate with each other and analyze data without human intervention. Research in
cooperative behaviors centers on artificial intelligence solutions. One avenue of research
proposes planning systems as a means of eliciting realistic behaviors. Planning systems

include knowledge-based planning, universal or reactive plans, case-based planning, and




task management. A second avenue proposes learning systems as a means of modifying
programmed behaviors to achieve performance improvements. Learning systems include
explanation-based, neural network based, and discovery-based learning machines. A third
approach explores interaction between independent computer systems. Blackboard and
bulletin board models indicate potential development approaches for autonomous agents.

Each area offers insight into developing cooperative behaviors in agents.

2.1 The Planning Approach

2.1.1 Knowledge Based Planning. V. V. S. Sarma and Savithri Raju present the
concept of data fusion with knowledge-based processing to help battlefield commanders
make decisions (Sarma and Raju, 1991). Data fusion is the collection and processing of
information collected from multiple, geographically separate sensor systems. Collection
sensors could include radar and sonar systems, infra-red detectors, seismometers, and even
human sources such as photo intelligence and espionage. With such a cacophony on a
battlefield, commanders must weigh each source before deciding a course of action. Data
fusion systems process all information and evaluate conditions based on both current
circumstances and previous knowledge. Summarized information is presented to field
commanders as an aid in decision making.

In the PDPC simulator, each agent uses a filtered view of perfect information to
gauge a response to an event. For example, each agent has knowledge of the location of
every player in the simulation. CLIPS processes data held by all of the agents in the
simulation, but PDPC rules limit action to adversaries within a specific radius.

2.1.2 Universal Plans. A universal plan is a preset list of actions that execute once
a specific condition, or set of conditions, is recogunized. Also called reactiv= plans, a

computer generated agent collects and processes data, then selects a predetermined plan
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of attack. In other words the computer agent reacts to specific scenarios, hence the term
reactive plans. A simple system depending exclusively on a single universal plan does not
demonstrate adaptability, a desired attribute of realism (Dyer and Gunsch, 1993:255). A

universal plan system cannot improve performance since action lists are predetermined.

PDPC uses universal plans on several levels. The overall dynamic model is a linear
system of "phases" which each agent must pass through during a mission. An agent
receives a new mission, launches itself when ready, cruises around on patrol, and returns
to land when recalled. This sequence of events constitutes a static universal plan. Within
this plan, an agent can follow one of several route plans depending on the mission
assigned. Agents can also calculate intercept trajectories and build a plan based on
circumstances. Agents do not necessarily follow routes all the way to the goal. They may
be interrupted enroute in which case a different set of rules apply and a new plan
generated. This mechanism allows flexibility in static universal plans. The underlying
system is a set of rules that must fire for any activity at all to take place. The PDPC
simulator has three levels of universal plan: an overall strategy plan, an underlying
procedural plan, and an intermediate flexible plan.

2.1.3 Case Based Planning. Research by Dyer and Gunsch indicates that a
variation on universal planning. called case-based planning, could solve the problem of
static performance and knowledge capturing inherent with universal plans (Dyer and
Gunsch, 1993:256). Case-based planners begin with a universal plan, but modify planned
actions based on current situations. A computer generated agent need not store large
numbers of static universal plans and need not spend computational resources to evaluate
multiple sensor sources. Cased-based planning starts by selecting a plan that closely fits a

given set of conditions and then modifying that plan to exactly fit conditions. Case-based

planners offer incremental performance improvement and adaptability.




The PDPC system uses the idea of case-based as a selector rather than a planner.
Individual rules act as self-contained reactive plans which execute depending on
conditions. This proved effective in design since the Shaw text and Titan report reduce air
combat to a series of maneuver selections based on aircraft states (Shaw, 1985) (Titan,
1986). Selected rules provide incremental increases in positional advantage as an
engagement progresses. Unlike a case-based planner, PDPC does not modify each rule
when selected. Like a case-based planner, PDPC selects a plan ihat closely fits a given set
of coaditions.

2.1.4 Task Scheduling Approach. A thesis by Whelan investigates the feasibility
of developing intelligent systems within a dynainic "real-time" architecture (Whelan,
1992). Task scheduling systems exhibit intelligent behavior by choosing a set of
procedures from several procedure bases. Selection depends on internal and external
conditions and the nature of threats in the environment. The architecture achieves a "real-
time" nature by scheduling high priority tasks before low prior:ty tasks and selecting short
procedure sets to meet short response times. The effect is that the system addresses high
threat events first by quickly offering a reactive plan. Then, when time permits, the system
analyzes conditions and provides a more effective solution. The primary focus in task
scheduling is dynamic task creation while meeting time criteria.

The PDPC system does not address the "real-time" issue since the primary focus was
on pilot decision processes, but performance measurement data indicates the system could
be modified to meet time criteria requirements (See Chapter 5). PDPC chooses a set of
rules from a selection of rule bases. Salience rather than priority dictates rule firing order,
but the system does not distinguish between short and long sets. With a slight
modification to rule base access rules, longer procedures can be bypassed in favor of
immediate action commands. For example, there is no need to build an intercept plan if 2

target is within missile firing range. For time based calculations, such as distance versus
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velocity, PDPC assumes a time increment of one second. Before using PDPC in a "real-
time" system, the time base would have to be connected to a "real-time" clock. "Real-
time" implementation has been left for future development.

2.1.5 An Agent Based Pilot-Vehicle Interface. Task management is the focus of
a system designed to help human pilots fly real airplanes (Funk and Lind, 1992). The Task
Support System (TSS) employs object-oriented software design techniques to configure
(and re-configure) the limited resources found within a real cockpit. The TSS is a
knowledge-based system with a "real-time" task manager. The system completes tasks
automatically, offers pre-sorted checklists when needed, and uses information displays to
present information on current tasks rather than background tasks. The TSS uses a task
scheduling approach, but is a pilot-vehicle interface rather than an autonomous agent.

The PDPC simulator employs object-oriented techniques in a knowledge-base system
geared to accomplish tasks related to air cornbat. The simulator is modularized to
conserve limited computing resources when buiiding decision trees. Participants use a
subset of the total rule base rather than pre-sorted checklists. The simulator also includes
memory management utilities to release memory that is no longer needed. Information
display is limited to textual output to either CLIPS development environment windows or
to alog file. Position data for each agent is also captured in log files for later display using
the Gnuplot interactive plotting program. Unlike the TSS and other "in-cockpit”
programs such as the Pilot's Associate (PA) (Banks and Lizza, undated), PDPC was

designed to close the loop of pilot decision processes and function autonomously.

2.2 The Learning Approach

2.2.1 Explanation Based Learning. Explanation-based learning is a way of

improving performance based on inputs from a human controlled simulator . Like case-
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based planning, explanation based learning modifies a universal plan. Unlike case-based
planning, changes in agent behavior reflect actions taken by human pilots rather than
modifications of a universal plan. One application of explanation based learning modifies
the tactical plans knowledge base of a pilot-vehicle interface called the Pilot's Associate
(PA) (Levi, 1992). A human pilot "flies" a simulator according to a predetermined script
that includes a tactic for which PA does not have a plan. A knowledge engineer applies a
record of the flight to a learning system shell. This shell generates an explanation-based
learning plan to incorporate into the tactical plans knowledge base of PA. The resulting
program applies the new plan when the learned situation occurs.

In PDPC, new tactics and maneuvers must be coded into rules and the simulator
applies new rules whenever pre-conditions are satisfied. Like the explanation-based
approach, PDPC gains capability when rules are added to the rule base. Unlike the
explanation-based approach, a knowledge engineer must generate code based on text or
verbal descriptions of tactics and maneuvers. An automat :d learning mechanism for
PDPC has been left for future research.

2.2.2 Neural Network Based Learning. Research at the University of New
Mexico resulted in a neural network model that selected aircraft maneuvers for different
air combat scenarios (McMahon, 1990). The network was trained £o select from 38
production rules to satisfy goals in air combat maneuvering. Results were compared to
the decisions made by expert fighter pilots and contrasted with results from an equivalent
rule-based production system. The neural network agreed with human pilot choices in 67
percent of the scenarios. The rule-based system agreed in only 25 percent of the
scenarios. In this case, a neural network model showed improved selection performance
when considering air combat maneuvering domains.

In contrast to the neural network model, PDPC contains over 400 production rules

in 28 modules, however, a study comparing human pilot decisions to PDPC decisions has
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been left for future research. The advantage of a rule-based simulation lies in coding of
new knowledge. Where a rule-based system gains capability with the addition of rules, a
neural network must be "trained" by creating and adjusting the weights of connections
between nodes (Rich and Knight, 1991:Ch. 18). A rule-based system also maps more
easily to a recognize-act inference cycle (Giarratano and Riley, 1989) which is
characteristic of a reactive plan approach.

2.2.3 Discovery Based Learning. A thesis by Kilpatrick investigated discovery-
based learning as a method of improving performance in route planning (Kalpatrick, 1992).
Discovery-based learning uses heuristically-guided generation and test algorithms to create
knowledge. In other words, a trial and error system was built into a free-running
simulation environment. Computer generated agents incrementally changed sets of input
parameters to determine which offered the greatest benefit in return. The most promising
sets were stored for later trial. The final selection was the input parameter set having the
highest heuristic value. Over time, agents improved performance in a variety of route
planning scenarios.

In PDPC, agents incrementally change output parameters on the expectation of
improving a benefit, e.g. a positional advantage over an adversary. Agents reassess
positions on each move and select rules that meet predicate conditions. Predicate
satisfaction depends on input parameter values which change as a simulation progresses.
Subsequent actions move agents toward a goal and the process repeats. In this respect,
PDPC acts as a trial and crror system within a dynamic environment, but heuristic value is
not retained for later trial. Instead, agents improve progress by using different rules that
result in increased, or decreased output values.

Learning systems were not a primary focus of this thesis, but provide insight into the
issues surrounding autonomous agents. Cooperative systems employ mechanisms used by

autonomous agents, but also coordinate information and actions of cooperating agents.
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2.3 Cooperative Systems

2.3.1 The Blackboard Model. The blackboard model uses modularized
knowledge sources, a common data structure cailed a blackboard, and a control system
(Barr, Cohen, and Feigenbaum, 1989:Vol. 4, Ch. 16). Knowledge sources are domain
specific and operate on information contained on the blackboard. If a knowledge source
finds information related to its particular part of the domain, then it either generates new
information or modifies information already on the blackboard. The control system
governs which knowledge source has access to the blackboard. The process of moving
from source to source proceeds sequentially until no source can add or modify current
blackboard information. The final state is presented as a solution.

The PDPC simulator follows the blackboard model with some exceptions. First, both
common and private data structures store information. The common data structure is
called a fact list (CLIPS, 1993). Information passed between rules is temporarily stored
on the fact list. Private data structures consist of the class slots of object instances. Data
manipulation results are stored in oi)ject slots for later use by knowledge sources. Second,
not all knowledge sources have equal access to blackboard data. The PDPC rule base is
modularized, but some modules must be specifically called by an agent before rules
activate. For example, to check aircraft radar status, agents must place a fact on the fact
list to call a module containing radar testing rules. Agents need not check radar status if
conditions dictate more imperative actions, such as evading an adversary already within
radar range. Third, the system is not designed to reach a final state. Scenarios continue
as long as there are agents to process. In a narrow sense, the simulation reaches a final
state every time an agent moves. Simulation control rules return control to executing rule
modules until all agents return to their home base. In other areas, the PDPC follows the

blackboard model.
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The initial architectural design for PDPC stored all information in a common access
data structure; the fact list. Every agent in the simu.ation had full access to all data. In
effect, the fact list acted as a single layer blackboard. After loading agent definitions,
environment definitions, and reactive plans, the number of facts exceed three hundred.
Although this may not seem a lot of information, it was sufficient to require over 50
megabytes of dynamic memory during test runs. A single layer blackboard model did not
meet the information capacity requirements of the PDPC simulator.

2.3.2 The Bulletin Board Model. Vernun Lun and Jan MacLeod present strategies
for real-time dialogue and interaction in multi-agent systems (Lun and MacLeod, 1992).
Specifically, they proposed a bulletin board model as an alternative to integrative and
blackboard systems. Integrative systems allow the existence of multiple computer agents
in an integrated knowledge-based system. A disadvantage of integrative systems is that
each agent has its own knowledge base. Multiple knowledge bases expand storage
requirements and require updating algorithms that cut across agent boundaries.
Blackboard systems use a central knowledge base. Although storage space is conserved,
blackboards act as bottlenecks when many agents simultaneously demand information.
Bulietin boards provide an intermediate form of data pool, combining the best attributes of
integrative and blackboard models. The result is that many agents can access a common
information source without bottlenecks.

Lun and MacLeod go on to describe dialogue and interaction strategies between
agents. By "posting" bulletins on a bulletin board, not only can agents pass messages to
other agents, but information can be broadcast to all agents and time sensitive information
can be monitored. Since cooperative systems depend on shared information, bulletin
board models offer mechanisms to implement cooperative agents.

2.3.2 Hybrid Blackboard. The PDPC incorporates aspects of simple blackboards

and bulletin boards into a hybrid structure. Information that must be passed between rules
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is stored on a blackboard structure. Information passed between objects is directly posted
to object slots, bypassing the blackboard. Temporary data is stored on the blackboard and
removed after several time steps, implementing "event" bulletins on a bulletin board (Lun
and MacLeod, 1992:672). These combined features reduced dynamic memory

requirements and demand for blackboard access.

2.4 Survey of Semi-Autonomous Forces (SAF)

2.4.1 Current Implementaticns Several semi-autonomous agent based systems
are reviewed in the 1993 Survey of Semi-Autonomous Forces, a report prepared by the
Defense Modeling and Simulation Office (DMSO, 1993). Typically in current
implementations, SAF units and equipment portray ground combat missions including
ground-to-air scenarios. One implementation, ARPA's Intelligent Forces program,
addresses air-to-air combat, but is limited to beyond-visual-range scenarios. The Modular
Semi-Automated Forces system uses a modular software structure to easily include
customized behavior modules. The BDS-D Computer Generated Forces system provides
each entity with “robust" behavior sets that dynamically invoked during scenarios. And
the Institute for Simulation and Training developed a low-cost system based on state
actions and transitions. The PDPC simulator contains features of several implementations
and uses these features to implement close-in, air-to-air combat scenarios.

2.4.2 Deficiencies and Problem Areas. The DMSO Survey points out several
deficiencies in current implementations. Few systems addressed Air Force platforms.
Entity representations concentrated on individual platforms and provided little definition
of group behaviors. Scenarios focused on close-in, ground combat with little attention
paid to air-to-air combat. The PDPC simulator provides an architecture for solving all of

these problems, but the main focus was in modeling cooperative decision processes.
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2.5 Summary

This chapter discussed research and current implementations in the area of autonomous
agents, also called computer generated forces. Agents participating in air combat
simulations must process large amounts of data and prosecute a solution in a realistic
manner. With the exception of reactive plans, planning systems require large storage areas
to maintain pre-planned solutions. Learning systems require long lead times to compute
solutions. Blackboard systems constrict information flow when processing large amounts
of information. The PDPC simulator models pilot decision processes using reactive plans
in a hybrid blackboard architecture. Automated learning systems have been left for future

research.
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3. Methodology

This chapter outlines the methods and procedures used in developing the PDPC
simulator. Included are mathematical calculations required for aerial combat, an overall
discussion of the CLIPS development environment and the modularized design of the
PDPC simulator. The chapter finishes with a discussion of how the PDPC progresses
through air combat phases and pilot decision processes. Impleinentation details are given

in Chapter Four.

3.1 Air Combat Maneuvering

3.1.1 Introduction. The goal of air combat maneuvering is to bring a weapons
system into a firing position (Shaw, 1985:1). Air combat pilots take one of two basic
approaches: the "angles" fight or the "energy" fight. In the angles fight, fighter pilots seek
a position advantage over an opponent. Characteristically, a position advantage means the
aircraft is situated behind, and pointed at, the target. In the energy fight, pilots seek an
energy advantage over an opponent. An energy advantage means the aircraft is situated
above, or has a higher velocity than, the target. Pilots use basic flight maneuvers to
achieve either a position or energy advantage.

Fighter pilots manipulate at least 40 quantitative parameters for each potential target
during aerial combat (Titan, 1986:71). For example, combat pilots must weigh a target's
potential weapons and maneuvering capabilities against his own capabilities combined with

that of his partner. Each parameter is prioritized according to engagement circumstances.

Combat pilots use subsets of parameters to decide strategy, tactics, target assignments,




and role of the wingman. Pilots assess each situation before, during, and after
engagements. New threats are compared to existing threats to decide if or when to break-
off from an engagement.

Combined with the mechanics of flight control, the domain of air combat
maneuvering presents a complex and challenging coding task.

3.1.2 Vector Mathematics. Appendix A details the mathematical basis for the
PDPC flight model. Overall concepts such as coordinate axis frames, forward, beam, and
rear quarters, and targeting vector terminology are defined in this appendix. Mathematical
functions based on the definitions in Appendix A were coded into the PDPC simulation.

3.1.3 Key Parameters. Appendix B describes the characteristics of key
parameters in air combat maneuvering. Most of the parameters listed are derived from
Shaw's book, Fighter Combat, Tactics and Maneuvering (Shaw, 1985) In air combat
maneuvering there are several different kinds of parameters. Low-level detail parameters
include aircraft specifications, such as maximum spezd and altitude. These low-level
parameters can be static or dynamic. Static means the value of the parameter should not
change during the life of the platform. Dynamic means the pilot controls a parameter's
value within a specific range. Some parameters can be associated with others and these
associations are pointed out where necessary. Appendix B describes parameters and their
characteristics.

Shaw identifies two critical parameters: specific energy and excess power. Specific
energy indicates maneuver capabilities and is key to determining whether an aircraft
should adopt the "energy" or "angles" fighter strategy. Specific energy depends on
altitude, speed, gravity, and radial G-forces applied to the airframe. The second of Shaw's
key parameters, excess power indicates climb performance. Excess power depends on
velocity, thrust, drag, and aircraft weight. Although a fighter may not have an explicit

energy advantage, excess power indicates the ability to gain an advantage.
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Specific energy and excess power not only suggest what tactics a combat pilot should
apply, they indicate whether a piiot is currently in an advantageous or disadvantageous
position. A third paity, such as a partner, could monitor progress in an engagement and
decide to engage based on Shaw's parameters.

3.1.4 Pilot Situation Awareness. Appendix C lists a series of questions geared 0
measuring a pilot's awareness of combat situations. I develope these questions from an
idea by Amburn who conducted a study measuring pilot situation assessment (Amburn,
1993). His study attempted to identify the merits of using virtual reality goggles versus
computer monitor displays. Based on this suggestion, I incorporated key decision areas
identified in the Titan report (Titan, 1986:110) with strategies and concepts defined by
Shaw and generated a survey of pilot situation awareness. Survey questions range from
checking radar signals, to selecting a formation and cooperative attack strategy, to
planning a retreat. Iused this survey to help build rule bases in the PDPC simulator.

3.1.5 Basic and Composite Maneuvers. The PDPC simulation uses two different
methods to select and perform maneuvers. The first method is a "fly-to-point" calculation.
Agents move toward a goal peint which is defined in terms of x, y, and z coordinates.
Angular and linear changes are controlled by vector mathematics functions defined in
Appendix A. All an agent needs to know is the location of a goal and key parameters such
as velocity and orientation change automatically. The second method is a planned version
of "fly-to-point". Agents decide on a target and prepare an intercept trajectory plan. This
method is used to calculate both intercept trajectories and flight routes over long
distances. Maneuver trajectories over short distances use the first method. The choice of
method depends on a player's phase in the mission.

3.1.6 Solo Versus ‘feam Actions. The difference between solo and team actions
appears when team players engage a target. Typically, the team leader engages

threatening targets when within firing range. Depending on the strategy selected,
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followers could select one of several actions. Followers could stay with the leader
throughout an engagement. Followers could orbit an engagement and warn the leader of
impending dangers or share the attack, trading orbit for attack maneuve:s. Leader and
follower could execute section tactics (Shaw, 1985:Ch. 5) in an attempt to surround a

target. In any case, the strategy dictates maneuvers of follower aircraft.

3.2 System Construction

3.2.1 The Basic CLIPS Process. The primary constructs in CLIPS are facts, rules,
and objects. A fact is a collection of words and symbols put into a sequential list. A rule
is set of actions that will be exccuted if a specific set of preconditions occurs. Objects
store data in slots defined by their class. CLIPS tests rule preconditions against existing
facts and object slot data. If all preconditions for a rule are satisfied, CLIPS executes the
actions specified by the rule.

3.2.1.1 Fact List. The fact list is an unordered list of statements indicating the
current conditions in a program. Facts could be a simple statement of truth such as "radar
on" or a complex list of parameters such as "target location 10.123 25.621 16.554." Facts
could also mimic intelligible speech such as "message from pilot to partner is to proceed
back to base". Facts laced on the fact list so that CLIPS can test them against rule
preconditions. Facts are removed from the fact list if rule actions include retraction
commands. Otherwise, facts remain on the fact list to test against more rules.

3.2.1.2 Agenda. The agenda is basically a waiting list containing rules that are
ready to fire. At some point CLIPS may find all the facts needed to meet preconditions
required by a rule. Rules that have their conditions met are placed on the agenda. When a
rule comes to the top of the agenda CLIPS checks the fact list to see if conditions are still

true and, if so, executes the actions specified by the rule.




3.2.1.3 Rete Algorithm. Since complex rules may require many pattern
matches, CLIPS keeps track of the patterns matches it finds by usir.g the Rete algorithm.
CLIPS determines the truth, or falsity, of a rule by matching the pattern of each fact to
similar patterns in each rule. Unless wild card patterns are allowed, patterns must match
identically for CLIPS to put a rule on the agenda. When only a few facts are available
rules may have part of their conditions met, but not enough to be put on the agenda.
CLIPS keeps track of rules that only have part of their conditions met by partially
instantiating each rule; incomplete matches generéte a decision tree for later use. When
more facts enter the fact list, partially instantiated rules progress toward completion until a
complete set of matches exists. Then each fully instantiated rule is placed on the agenda
for firing. While waiting for more facts, partially instantiated rules occupy memory. Many
complex rules may use significant amounts of memory; enough to slow processing
efficiency.

3.2.1.4 Modules. The PDPC uses modularized rule bases to improve
performance and reduce dynamic memory requirements. Version 6.0 of CLIPS can be
modularized, meaning rules can be grouped according to function or circumstance. Rules
activate only when an agent specifically accesses a module. The key to performance
improvement lies in the fact that rules not pertaining to a situation are not considered by
the Rete algorithm. Effectively, CLIPS processes many small rule bases rather than one
large rule base.

3.2.2 Simulation Environment. We arbitrarily defined the simulation environment
to allow flexibility. Units are not assigned to all measures. Instead, units were scaled to
fit the simulation once pilot decision processes were defined and tested.

3.2.2.1 Airspace and Terrain Definition. No specific airspace and terrain
definitions were designed into the system An arbitrary playing grid of 1000 by 1000 by

1000 defined parameters for Gnuplot files, but agents were not restricted to specific
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boundaries. Using the ratio of velocity to time increment, one unit of measure in the
PDPC simulation is approximately 30 meters. Later interface to a Red Flag Terrain
graphics displays allowed a playing ficld of 25,000 by 50,000 meters with an unlimited
third component. Adapting PDPC location data output files required minor code
modifications before agents remained within boundaries set by the Red Flag playing field.

3.2.2.2 Players and Stations. Initially four aircraft and four fixed stations
were defined. As developments proceeded, these numbers varied to fit different scenarios.
Currently, there are definitions for three playing sides: friendly, enemy, and neutral. Both
friendly and enemy sides have two aircraft, one airfield, one refueling station. and plans
outlining patrol routes througa controlled airspace. Neutral agents use either friendly or
enemy resources. In the PDPC simulator, friendly forces control southern airspace and
enemy forces occupy northern airspace. Neutral forces control no airspace, but are free to
move throughout the simulated environment. The term "piayer” defines a moveable agent
within the simulation.

3.2.2.3 Movement Within the Environment. As simulation runs progress,
each player is given one time increment to move in any direction. Movement is defined by
a three-space velocity vector. During any maneuver, players change locations by an
amount equal to the magnitude of the velocity vector. The flight model was kept simple
to distinguish between decision processes and system delays. Players that did not return
to the playing field, for example, revealed coding errors since the behavior could not be
attributed to long system timing delays.

3.2.2.4 Simulation Timing. A fixed time increment of one second determines
distance traveled based on player velocity. The PDPC simulator is not real-time since it is
not coordinated with a real-time clock. Real-time measurement data reveals each iteration
through rule modules varies in dur>tion. Real time increments depend on the number and

state of players in the simulation, the number of ruies in accessed rule modules, and the
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system hardware used. Results in Section 5.9 indicate promise in terms of speed of
operation, but rules will have to be modified to serve the purposes of CGF. A fixed time
system helped concentrate sicsign efforts on pilot decision processes rather than simulation

control schemes.

3.3 Phase Control Architecture

3.3.1 Modular Rule Base System. The PDPC simulator uses a rule base that has
been divided into small several rule groupings called modules (CLIPS, 1993). There are
three levels of modules: main, phase control, and decision modules. Each level provides
specific capabilities within the overall system architecture.

3.3.1.1 Main Module. At the top level is the main module. The main module
contains procedural functions needed to produce vectored movement within the simulated
environment and control rules needed to cycle simulations through time increments. Class
and object definitions as well as utilities to generate plot files or Red Flag display data are
~ also included in the main module. CLIPS begins and ends each pass through PDPC rule
modules at the main module. When a player's phase slot does not contain "MAIN",
control passes to a phase control module. This characteristic is used to initiate and control
an infinite loop.

3.3.1.2 Phase Control Modules. Once a simulation begins, coutrol focuses
on different phas~ modules. Phase control modules are defined for each possible stage of
a player's miss: ... The initial phase is called "New-Mission" since each player is given a
mission to prosecute. The final phase is called "Landing" because the end of a mission
typically follows a landing at some airfield. From New-Mission to Landing phases, players

could traverse up to twenty different phase control modules. Phase control modules are

listed in Table 3.1.




Table 3.1. Phase Control Modules.

Phase Description

New-Mission | Receive a mission to prosecute
Launch Take off from an airfield

Cruise Move from point to point

Search Look for targets

Identify Characterize targets found
Intercept Move between target and victim
Chase Pursue without intent of engaging
Pursuit Pursue with intent of engaging
Engage Maneuver to a firing position
Acquire Select and arm a weapon

Fire Launch selected weapon

Analyze Gauge effectiveness of weapon
Breakoff Abort an acquire-fire-analyze sequence
Disengage Abort an engagement

Avoid Maneuver against a missile attack
Evade Maneuver against a possible engagement:
Retreat Escape from a possible engagement
Refuel Rendezvous with a tanker

Recall Return to home base

Landing Land at home base

Phase control modules establish a linear sequence of rule base groupings. Each
module contains only those rules needed to execute actions in that phase of a mission. For
example, in Launch phase players concentrate on taking off from an airfield, but in Search
phase players concentrate on finding a target. While in Launch phase, players do not
search for a target, and while in Search phase, players do not try to take off from an
airfield. A single rule within each phase allows transition into another phase. For
example, if a player finds a target while in Search phase a transition to Identify phase
allows a player to determine whether that target is friendly, enemy, or neutral. If the
player and target are of opposing sides, friendly versus enemy, the player transitions to
Intercept phase and executes rules needed to prosecute an intercept trajectory. Once the

target is intercepted, the player transitions to Pursuit phase and then to Engage phase if
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the target comes within striking distance. Phase transitions progress, or regress, until
mission time limits expire when players return to their home base.

3.3.1.3 Decision Modules. Planning and decision-making beyond the scope of
prosecuting an established plan is conducted within decision modules. Each module is
based on pilot decision areas identified in the Titan report (Titan, 1986:110-114). There
are six decision modules containing rules ranging in scope from pre-engagement posturing

to post-engagement consideration. Decision modules are itemized in Table 3.2

Table 3.2. Decision Modules.

PHASE Description

Pre- Checks radar, correlates target data,
Engagement | estimates threats, and begins commitment
Engagement | Selects a strategy, attack formation and
Strategy approach to the target

Intercept Calculates routes for intercept and bingo
Geometry plans

Weapons Assigns targets, sets engage/abort criteria,
Employment | selects and assigns weapons

Counter Selects maneuvers, phase, ..d actions
Action based on target activities

Post- Decides whether to re-engage or
Engagement | disengage based on success of an attack

3.3.2, Simulation Control. Simulation runs proceed based on state information
contained in player class definitions and global information stored on the fact list. Rules
fire provided data is continuously updated. If new data is not generated or old data
remains unmodified, CLIPS stops rule execution and simulations stop. Ultility rules ensure
simulation runs continue after each iteration.

3.3.2.1. Data Structures. There are three data storage mechanisms. First,
data can be stored on the fact list as a simple fact. Permanent data and iteration control

facts are defined at initialization and stored on the fact list. Second, temporary data is
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stored on the fact list in a template. Templates are defined at initialization, but are not
placed on the fact list unless specifically required during rule processing. The distinction
between simple facts and templates is the order of placement on the fact list. Fact data
stores old information that is replaced with modified data. Template data stores new
information that is removed when consumed. The third data storage mechanism uses
object slots to hold information. Slots hold initial data defining each player state and store
modified data as simulations progress. Facts hold global information, templates allow
message passing, and object slots allow multiple players in different stages of processing.
3.3.2.2. Focusing on a Moduie. Two mechanisms change the current rule
module. First, the CLIPS "focus" function call changes the currently executing rule
module. The focus function allows players to progress through phase control stages and
call decision modules as needed. The second mechanism changes phases based on a rule
in the main module which compares player phase states to the currently executing module.
If the player's phase is not "MAIN", control is focused on the phase module required by
the player. This allows automatic control transfers and players in different phases of
missions. Switching between rule bases reduces hardware resource requirements by
limiting the number of rules under consideration. It also greatly improves pattern
matching speed under the Rete algorithm and results in improved overall performance.
3.3.2.3. Simulation Control. The entire simulation is controlled in the main
module. On each iteration, or time step, "moveable" players analyze their situation and
decide on direction, velocity, orientation and other parameters in preparation to "move."
Once all players in a particular phase are ready, a single rule in the main module completes
all movement calculations and stores modified data in each player's object slots. In other
words, each player moves. CLIPS is focused on phase control modules until all players
have been "moved." Utility rules monitor when every moveable player has moved which

prompts simulation contro} rules to reset every player's state to "moveable.” History
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objects, plot files, and other outputs are updated on each iteration. Control is returned to
phase modules by activating the focus control rule for each player and the cycle repeats.

3.3.2.4. Input and Output. Input and output remained simple since we
concentrated on pilot decision models rather than interfacing. The primary output is text
based and describes player states and decisions as a simulation progresses. A format
statement embedded in each rule and function is switched on or off depending on the
setting of global boolean variables defined for each module. When a variable is set to "t",
a statement describing each rule firing within a module is sent to the standard output
terminal, usually the display screen. When a variable is set to "nil", no statements appear.
If a variable is set to "log", statements are sent to a log file recording the simulation.
PDPC can also generate data files compatible with the Gnuplot interactive plotting
program. Figures presented in Chapter Five were generated using Gnuplot and PDPC
generated data files. An output available on "windows" based systems, the CLIPS
development environment displays the current state of CLIPS programs. in PDPC,
module names are equated with phase states, so simulation progress can be monitored on
the fact list, agenda, and focus stack windows.

A complete VO interface is available, but not fully implemented. CLIPS provides a
function to read and write class structures to a file. When used, simu .1on progress can
be monitored by reading and interpreting state data held by each object. In the UNIX
version of PDPC, file-based class structure I/O can be changed to pipe-based. Using two
C language utilities and a semaphore control algorithm, PDPC can support players
originating in external programs. The interface is rudimentary, but provides complete
access to aircraft class structure definitions while simulations execute.

3.3.3. Scenario Definition. Given a player definition and an initial plan to follow,
the PDPC can enact different engagement scenarios. The scenarios are not scripted, but

unfold with dynamic interaction of autonomous agents. Currently only testing and defense
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missions are defined in detail. Air superiority and offensive rules are defined, but not fully
tested. Testing and defensive mission assignments provided PDPC with sufficient
capability to investigate cooperative behaviors.

3.3.3.1. Player Definition. Players are defined as class objects. Each object
has slot to hold state data during simulations. At start-up, players must have a name, a
side, a role, and a mission. Default names in PDPC are pilot, partner, bogey1, and
bogey2. Pilot and partner are on the "friendiy" side while bogey1 and bogey2 are on the
"enemy" side. Neutral players are not pre-defined. A player's role can be one of leader,
follower, or solo. A player's mission can be one of testing (for drone aircraft), defense,
offense, or superiority. Each player's initial location must match an airfield location
because the first movement rules execute a launch sequence from a base. All other object
slots are updated dynamically as each simulation unfolds.

3.3.3.2. Mission Assignment. Initially, mission statements are part of each
player's definition. The simulator makes mission assignments depending on initial player
mission purposes. For example, if a player's mission is "defense," the initial mission
assignment will be "CAP-station." A player's mission assignment changes curing
simulation runs. Player's switch from "CAP-station" to "patrol" depending on how long a
simulation has run. A CAP station plan follows a closely spaced series of waypoints while
a patrol plan follows a dispersed series. A player's mission assignment is "completed"
upon retﬁm to a home base.

3.3.3.3. Team Assignm-.nt. Initially, players on the same side are not
associated. Once the simulation begins. followers are assigned to a leader on the same
side. Leaders dictate the mission purpose, assignment, and plan. Cooperative behavior
rules ensure followers recognize the leader's role and act accordingly.

3.3.3.4. Plan Assignment. Once a player has a mission purpose, mission

assignment and team assignments, a plan appropriate to the mission is selected. Currently,
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only "patrol” and "CAP-station" plans are initially defined. Intercept and bingo plans are
created and defined when needed. Behaviors in other phases, including plan selection, are
invoked as players react to detected adversary players.

3.3.4. General Sequencing. The general sequence of events follows the phase
control sequence. Once all assignments are complete, players proceed to Launch phase
for take-off. When a launch is successfully executed, players cruise to their first waypoint.
Players change to Search phase when they reach a waypoint. If no targets are detected,
players cruise to the next waypoint. The simulation continues until scheduled mission time
expires, the aircraft runs low on fuel, or a potential target is detected. If mission time
expires, players return to their home base. When aircraft run low on fuel, they proceed to
the closest refueling station. If a potential target is detected, players begin a tactical
decision sequence leading to an engagement. When a threat is eliminated (or runs away),

players return to their original mission assignment.

3.4. Summary.

This chapter defined the PDPC simulator architecture and implemer}tation methods. A
phase control architecture provided an easy means of coding air combat maneuvering,
tactics, and strategy as well as build a simulation control system. The simulation
environment was arbitrarily defined to allow flexible development. Vector mathematics

formulae, data definitions, and pilot situation awareness are detailed in appendices.
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4. Implementation

This chapter details the architecture and design of the PDPC simulator. Except where
stated, notation conventions follow object-oriented design techniques (Rumbaugh, 1991).
Section 4.1 begins the chapter with a description of the PDPC object model. Definitions
of each class and subclass include summaries of slot definitions. A summary of data slots
is contained here to illustrate relationships between objects and rules. Comprehensive slot
definitions are contained in Appendix D.

Sections 4.2 through 4.3 describe the PDPC dynamic model. Section 4.2 provides a
high level description of the PDPC dynamic model. Interaction between main, phase
control, and decision modules is illustrated using state diagrams. Section 4.3 describes the
dynamic model of each phase control module. Each dynamic model illustrates which rules
cause transitions to other modules, which rules interact with other rules, and which rules
result in player behaviors. Accompanying discussions describe the purpose of each
module and the expected behaviors caused by key rules. Section 4.4 describes the
dynamic model of each decision module. Decision modules are partitioned into sub-
modules which are called depending on the requirements of players in the simulation.
Players access more extensive decision processes in decision modules than offered in
phase control modules. Cooperative behaviors are also treated more in depth in decision
modules.

Section 4.5 provides a brief discussion of the PDPC functional model. The functional
model of individual rules is nearly identical, so only player movement and simulation driver

rules are modeled in depth.




The chapter concludes with discussions on implementing specific cooperative

behaviors. Changing missile goals, swapping player roles, and executing cooperative

maneuvers illustrate how PDPC elicits cooperative behaviors from players.

4.1 Object Model

The object model consists of a hierarchical class structure of players and plans. The

overall class structure is shown in Figure 4.1. The "user" class marks the end of CLIPS

standard classes and the beginning of the PDPC hierarchy.

I USER l

| PLAYER | HISTORY |
[ * I [
PLATFORM STATION PLAN
A
N I [ |
[AIRCRAFT | MISSILE ] PHASE-PLAN! IROUTE-P' AN|

A

l

| l

INTERCEPT-PLAN LANDING-PLAN l BINGO-PLAN]

Figure 4.1. Class Structure.

4.1.1 Class Hierarchy. The class structure consists of twelve classes and

subclasses arranged in four layers. Each subclass layer inherits slots from its superclass.

The "player” class declares two slots: name-of and side. The name-of slot holds a symbol

identifying a player object. The side slot indicates to which team a player belongs, one of

friendly, enemy, or neutral. History objects are associated with each moveable player and

record the last five locations of a player. History data is used to project paths and predict
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player locations during pursuit and intercept phases. Subclasses inberit player class slots,
but not history class slots.

4.1.2. Platform Definitions. The platform class defines moveable players such as
an aircraft or missile. Each platform has location, velocity, and nrientation vectors to
define position within the environment. Moveable players are further characterized by
phase, goal and control information. The phase slot indicates which phase module the
agent requires. Goal data includes the name and location currently targeted. Control
fields indicate player changes to aircraft velocity, acceleration, thrust, etc. within the
aircraft body coordinate frame. Platform data slots are modified by rules dictating
movement through the simulation.

4.1.2.1. Aircraft Definitions. The aiicraft class defines the primary vehicle in
the simulation. Aircraft class slots fall into one of several categories. State data includes
the phase slot and a state slot which indicates whether the aircraft is moveable or not.
Mission data describes which aircraft belong to which side, who are leaders and who are
followers, the mission, current assignment anc plan of action. Navigation and platform
data slots are inherited from the platform class. Strategy data slots describe the approach,
formation, and tactical coordination method oae team uses against an opponent. Tactical
data reflects the maneuver currently being executed as well as target threat information
including prioritized target lists. Avionics slots indicate the current status and operating
mode for radio, radar, and electronic counter-measure systems. Initial aircraft definitions
are shown in Figure 4.2

4.1.2.2. Missile Definitions. The missile class defines the second vehicle in
the simulation. Missiles inherit platform class slots upon instantiation. Missile class slots
define missile capabilities, status, and ownership. Missiles are dynamically instantiable
players. Aircraft objects create missile objects to fire at opponents. Other players must be

defined at simulation start-up. Missile class slots are shown in Figure 4.3.
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| PLATFORM i

| AIRCRAFT |

I
(" (AIRCRAFT) A

1
(" (AIRCRAFT) )

e (AIRC;RAFT) )

1
[ (AIRCRAFT)

State Data

1ate Data

State Data

State Data

name-of = pilot
phase = New-Mission
state = moveable

name-of = partner
phase = New-Mission
state = moveable

name-of = bogey1
phase = New-Mission
state = moveable

name-of = bogey2
phase = New-Mission
state = moveable

leader-of = partner
follower-of = none
mission = defense
assignment = none

leader-of = none
follower-of = pilot
mission = defense
assignment = none

Mission Data Mission Data Mission Data Mission Data
side = friendly side = friendly side = enemy side = enemy
role = leader role = follower role = solo role = solo

leader-of = none
follower-of = none
mission = defense
assignment = nons

y

leader-of = none
follower-of < none
mission = superiority
assignment = none

\plan = none _/ \plan=none _/ \plan=none \plan = none J
Platform Data Navigation Data Strategy Data
mass iocation tactical-coordination
on-the-ground velocity formation
fuel orientation approach
throttle goal bearing-to-defensive-target
condition goal-location distance-to-defensive-target
missile-load desired-direction kill-radius-of-defensive-targst
type-of Tactical Data Avionics Data
number-of maneuver radio-status radio-mode radio-channei
abc-velocity target-name radar-status radar-mode
abc-acceleration target-status IR-source-status IR-detector-status
abe-thrust target-victim radio-jammer-status radio-jammer-detector
abc-attitude victim-location radar-jammer-status radar-jammer-detector
attitude-rate target-threat jamming-source-name
attitude-moment target-priority jamming-source-location
Figure 4.2. Aircraft Instances and Slots.
PLATFORM MISSILE
— ===
4 — (LM"_S"':E) —_—— PlatformData
[State Data _ __ _' “mass
| n:ransz-of | _Navigation Data foune-ltha-ground
| St | “location throttie
Tactical Data__ 1 Velodlty type-of
[side I cg:g::\tation number-of
| missile-name | aeallocati abc-velocity
' belongs-to go"! IO:Zt.lOn . abc-acceleration
| status | gesregdirection . __  ope thrust
| envelope | abc-attitude
| kill-probability | attitude-rate
{eliability Y, _aftitude-moment

Figure 4.3. Missile Instance and Slots.
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4.1.3. Plan Definitions. Two pian classes and three subclasses define the extent of
planning in the ®DPC simulation. Each p.an is basically a template for dynamic planning.
The main plar classes are shown in Figure 4.4.

4.1.3.1. Phase Sequence Plans. Phase plans control the sequence of phase
modules. Some rules do not contain coded phase transition data. Instead, the next phase
is looked up in the phase plan. Phase sequencing can be changed by changing the order of
phases in the phase plan. Each side in the simulation has one phase plan.

4.1.3.2. Route Plans. A route plan is a pre-defined description of a sequence
of waypoints. The location of each waypoint and the sequence to be followed is contained
in each route plan. Aircraft select waypoint locations based cn their current location.

Route plans must be instantiated at start-up.

PLAN
T |
/ (ROUTE-PLAN) N/~ (PHASE-PLAN)
name-of = friendly-patrol-route New-Mission = Launch
side = friendly Launch = Cruise
type-of = patrol Cruise = Search

waypoint-1 = 900 100 100 waypoint-2 waypoint-3
waypoint-2 = 900 400 100 waypoint-3 waypoint-4
waypoint-3 = 100 400 100 waypoint-4 waypoint-1
waypoint-4 = 100 100 100 waypoint-1 waypoint-2
Launch = waypoint-1

@ecall = base W,

4 (ROUTE-PLAN)

J

name-of = friendly-CAP-station-route

side = friendly

type-of = CAP-station

waypoint-1 = 500 100 100 waypoint-2 waypoint-4
waypoint-2 = 700 300 100 waypoint-3 waypoint-5
waypoint-3 = 300 300 100 waypoint-4 waypoint-2
waypoint-4 =300 0 100 waypoint-5 waypoint-3
waypoint-5 =700 0 100 waypoint-2 waypoint-4
Launch = waypoint-1

Search = |dentify
Identify = Intercept
Intercept = Chase
Chase = Pursuit
Pursuit = Engage
Engage = Acquire
Acquire = Fire

Fire = Analyze
Analyze = Breakoff
Breakoff = Avoid
Avoid = Disengage
Disengage = Evade
Evade = Retreat
Retreat = Refuel
Refuel = Recall
Recall = Lancing

@ecall = base Y,

Ingress = Egress

Landing = New-Mission

\Egress = Recall /

Figure 4.4. Initial Route and Phase Plan Instances.
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4.1.3.3. Landing Plans. A landing plan is defined for each airfield. Instead of
generic waypoint definitions, landing plans contain specific data geared to lead a player to
the end of a runway. A landing plan is depicted in Figure 4.5.

4.1.3.4. Bingo Plans. Bingo plans are route plans that lead to a refueling
station. The difference between bingo plans and route plans is that bingo plans can be
modified depending on the location of aircraft. During combat, aircraft that are low on
fuel return to the closest bingo field to refuel. Bingo plans allow calculation of the
shortest distance to fuel. Before entering an engagement, players update their bingo plan
with an new entry point and declaration of primary and secondary routes. The entry-point
is the current location when the plan is updated. Waypoints are chosen to provide
optional routes out of an engagement and back to refueling stations. The primary bingo
field is the one with the shortest overall route.

4.1.3.5. Intercept Plans. Intercept plans are route plans that lead a player to a
target even if the target choses a third paity as its victim. Intercept plans calculate a path
to a target while accounting for the fact that the target is moving. If the target is moving
toward a third party, such as a base or tanker, intrcept trajectories are modified to move a
player toward the victim instead of the target. Intercept plans are dynamicaily created to
fit each potential intercept. Up to six waypoints can be us=1 to define the intercept
trajectory. Two more waypoints are reserved for orbit point definitions.

Orbit points provide waypoints for follower aircraft once a leader engages a target.
Followers modify orbit points to stay close to an engagement in case lead aircraft get into
trouble. If trouble occurs, follower aircraft engage the target and leader aircraft follow the
orbit points. A typical intercept plan is shown in Figure 4.5.

4.1.4. Environment Definition. Environment definitions are stored in one of twc
ways: as global facts on the fact list or as station objects. Currently, four fixed stations are

defined in PDPC simulations: two airfields and two refueling tankers. Each side is
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______________ |
(INTERCEPT-PLAN) Y (LANDING-PLAN) h

(
oS T T = — = — — — B ——
.| name-of = player-to-target side = friendly
| side = friendly name-of = friendly-landing-plan
| type-of = intercept-plan type-of = landing
waypoint-1 = 100 400 100 waypoint-2 waypoint-2 10 approach =100 0 50 glideslope 5.0
| waypoint-2 = 200 300 100 waypoint-3 waypoint-3 20 glideslope = 0 100 25 touchdown 2.5
| waypoint-3 = 400 200 100 waypoint-4 waypoint-4 20 touchdown = 90 100 1 stop 1.0
waypoint-4 = 500 100 100 waypoint-5 waypoint-5 20 stop =110 100 O completed 0.0
I waypoint-5 = 700 150 200 waypoint-6 waypoint-6 25 \ )
| waypoint-6 = 900 100 300 Intercept waypoint-8 20
i waypoint-7 = 800 150 300 Intercept waypoint-8 20
waypoint-8 = 900 150 300 intercept waypoint-7 20
entry-point = 100 450 100 waypoint-1 waypoint-1 10
| intercept-point = waypoint-? waypoint-7
| orbit-point = waypoint-7 waypoint-8
Launch = waypoint-1
| Recall = base

______________ -
4 (BINGO-PLAN) )
| name-of = friendly-bingo-plan
side = friendly

type-of = bingo-plan

waypoint-1 = 900 900 200 waypoint-4 waypoint-5 400
waypoint-2 = 300 700 200 waypoint-4 waypoint-6 400
waypoint-3 = 800 500 200 waypoint-4 waypoint-7 400
waypoint-4 = 900 100 200 Refuel  Refusl 800
waypoint-5 = 100 900 100 waypoint-8 waypoint-1 400
waypoint-6 = 100 700 100 waypoint-8 waypoint-2 400
waypoint-7 = 100 500 100 waypoint-8 waypoint-3 400
waypoint-8 = 100 100 100 Landing Landing 800
entry-point = 500 90C 100 waypoint-1 waypoint-5 500
primary = waypoint-1 watpoint-5

secondary = waypoint-5 watpoint-1

terciary = x y 0 ground

Launch = waypoint-1

@ecall = base J

Figure 4.5. Intercept, Bingo, and Landing Plan Instances.

assigned one airfield and one tanker apiece. Tankers are defined as stationary to simplify

scenarios while developing pilot decision modules. The boundary between opposing sides

and wind velocity are defined as global facts. Station objects are shown in Figure 4.6.
4.1.5. History Objects. Each platform class object is associated with a history

object. History objects store short term location data. Up to five consecutive locations




|_PLAYER |
l

( (STATION) ) ( (STATION) )

name-of = friendly-base name-of = enemy-base
side = friendly side = enemy

type-of = base type-of = base

location =100 1000 location = 900 900 1.0
orientation=000 orientation=000

J - _/

( (STATION) ) ( (STATION) )

name-of = friendly-tanker name-of = enemy-tanker
side = friendly side = enemy
type-of = tanker type-of = tanker
location = S00 100 100 Incation = 100 900 100
orientation=000 orientation=000

N b .

_/

Figure 4.6. Fixed Location Instances.

can be recorded by a history object. Location data is used to compute both short distance
and long distance intercept points. In a short distance intercept, the first three locations
are used to predict the next location. In a long distance intercept, the first, third and fifth
locations are used to predict a location after ten time steps. Short distance intercepts are
used in engagement maneuvering while long distance intercept are used in planning

intercept trajectories. Figure 4.7 depicis history object instatnces for each default player.

l USER ‘

|
( (HISTORY) ) ( (HISTORY)

name = pilot-history name = bogey1-history

belongs-to = pilot belongs-to = bogey1

locations = locations = J

( (HISTORY) ) ( (HSTORY) )

name = partner-history name = bogey2-history
belungs-to = partner belongs-to = bogey2
locations = locations =

Figure 4.7. History Instances.
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4.2 Dynamic Model.

The dynamic model spans 27 different modules, but basically there are three types:
main, phase, and decision modules. This section begins with an overall dynamic model of
the phase control sequence followed by a discussion of the relationship between phase
modules and decision modules. Phase control modules comprise the largest part of the
PDPC architecture, but decision modules provide deeper reasoning capabilities an. model
cooperative decision-making processes. This section concludes with a discussion of the
main module and its role in PDPC simulations. Detailed discussion of individual phase
and decision modules is contained in Sections 4.3 and 4.4.

4.2.1. Phase Control Sequence. The phase control sequence begins with the New-
Mission module and concludes with the Landing module. As a simulat.on progresses,
players change phase modules to meet different situations. For example, once mission
assignments have been made in the New-Mission phase, players transition to the Launch
phase and take-off from the airfield. Rules within each phase detect conditions warranting
phase changes, execute actions if a phase change is not warranted, or access decision
modules to determine appropriate actions. Figure 4.8 maps PDPC phase transition paths.

4.2.2. Decision Modules. Decision modules can be called at any point in the phase
sequence. The ordering shown in Figure 4.9 indicates a rough parallel to phase
sequencing. Pre-Engagement rules typically activate during Launch through Intercept
phases. Engagement-Strategy rules initially activate during Intercept phase, but can be
called during chase, pursuit or engage phases. Intercept-Trajectory rules are also initially
activated in Intercept phase, but can be called at any time. Weapons-Employment,
Counter-Action and Post-Engagement rules activate during or after Engage phase.
Decision rules provide a more detailed analysis and planning mechanism than phase

sequence rules.




NEW MISSION

IDENTIFY

INTERCEPT

CHASE )

t-| PURSUIT |
4:-| ENGAGE |

™~ ACQUIRE

ANALYZE

B

| RECALL |

[ LANDING |

Figure 4.8. Phase Control Sequence Map.

NEW MISSION

PRE-ENGAGEMENT |
ENGAGEMENT-STRATEGY)|
INTERCEPT-TRAJECTORY]|
WEAPONS-SELECTION |
COUNTER-ACTION |
POST-ENGAGEMENT |

LANDING |

Figure 4.9. Decision Rule Modules.




4.2.3. Role of the Main Module. The Main module is the CLIPS definition for no
module at all. Once all rules in a particular module have had a chance to fire, control
returns to the Main module. Utility and control rules in the Main module provide
simulation updates and generate output data files. The relationship between the Main
module and all other modules is shown in Figuré 4.10. Note that decision modules return
control to phase sequence modules before control returns to the main module. This
ensures the most current data is in place before movement rules within the Main module

change player location, orientation, velocity and other parameters.

NEW MISSION

PRE-ENGAGEMENT

POST-ENGAGEMENT |

LANDING

Figure 4.10. Main Module Control.

4.2.4. Main Module. Rules in the main module are shown in Figure 4.11. Each
parallelogram represents a rule that fires during simulations. Arcs within the main module
roundangle represent direct control. For example, the "operater” rule must fire before the
"make-the-move" rule can fire. Data dependence ensures rules fire in a specific order, but
rules can also fire indeperdently. For example, "move-player” is the main rule of the
simulation. Each player ready to move causes "move-player"” to fire which, in turn,
changes that player's location, speed and orientation. Once all players have moved, the
“iterate” rule fires which leads to a new move {or each player. The sim:ulation 1s focused

on the phase module dictated by the phase of each player and the cycle repeats.
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Figure 4.11. Main Module Rules.

Except for the "receive-
message" rule, remaining rules
provide simulation control and
system level input/output. For
example, the "anti-collision" rule
ensures two objects do not
occupy identical location
coordinates. The "save-test-
point" rule saves current object
structures, including slot data
values, to a file for later analysis.
The exception is "receive-
message" rule. This rule focuses
players into a rule-base that
processes communication
between cooperating players.
Messages such as "Follow me!"
and "Missile warning!" trigger

automatic responses in the

receiving player. The typical response is a change o1 phase with cooperating players also

changing roles.

The final element of tne main module is the functions base. All functions, including

basic math functions reside in the Main module. Putting functions in the Main module

allowed easy access to common numerical procedures such as calculating target distance,

relative velocity, and bearing. Each phase and decision module has visibility to all

functions in the Main module.
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4.3 Phase Module Dynamic Models.

This section illustrates the dynamic model of individual phase contro! modules.
Detailed discussion of the pursuit through evade phases is provided by Hluck (Hluck,
1993). All other phase control modules are discussed in this section. Decision modules
are discussed in Section 4.4.

4.3.1. New-Mission Phase. New-Mission rules give mission assignments to
available aircraft. A new mission is selected based on mission purpose. Each mission is
married to a default route plan. Once an aircraft has a mission assignment, the phase

changes to Launch phase and

] scenarios begin. Upon return to a
| LANDING |

New-M
@ § i a i il

%Y new-mission-to-titan /'
check-radar  / players have landed at the base. Then

base, aircraft stand idle until all team

777 give-assignment / anew assignment is given and the

simulation restarts. Figure 4.12

W testing-mission

e —
Ay Static-mission
¥ red-flag-mission / New-Mission phase.

shows the dynamic model of the

/ 4.3.2. Launch Phase.

7 continue-simulator / Launch phase follows new-mission
resume-mission /

77 reassign-mission /

phase as depicted in Figure 4.13.

LAUNCH |

Aircraft depart their home base by
Figure 4.12. New Mission Phase. accelerating to take-off speed and
increasing pitch angle to gain altitude.
For simplicity, we assigned either an west-to-east or north-to-south orientation on
runways. Aircraft depart on an initial orientation of (0, 0, 0) or (0, 0, -pi/2) depending on
which airfield is home base. Leader aircraft depart first if there is an assigned leader.

Follower aircraft remain stationary until leaders have accelerated.
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[ NEW MISSION

/
/
T /
2o/ launchelift /

%/end-launch-phase
/end-test-launch  /—— CRUISE |

=/ level-out-launch

Figure 4.13. Launch Phase.

While within 50 units of the base, aircraft accelerate to cruising speed and continue
gair‘'ng altitude. Once an aircraft is more than five units away and at least one unit up, the
climb is reduced toward level, upright flight. When players are more than 50 units from
the base, the Launch phase ends and Cruise phase begins.

4.3.3. Cruise Phase. Once in cruise phase, the assigned mission is prosecuted
according to an assigned plan. Aircraft move from waypoint to waypoint while checking
for potential targets. Radar status and operating mode is checked against rules in the Pre-
Engagement decision module (discussed in paragraph 4.4.1). Ifa target is detected before
reaching a waypoint, aircraft transition to Identify phase. Otherwise, a long range search
is conducted upon reaching a waypoint. Low fuel warnings, expired mission time, or
approach to home base are handled by transition rules to Refuel, Recall, and Landing
phases, respectively.

Four rules specifically control the actions of follower aircraft. A "follow-the-leader"
rule gives follower aircraft a goal of their leader so that team aircraft fly in formation.
"Follower-solo" changes a follower's goal from a leader to a waypoint so that follower
aircraft fly independently of the leader. "Follower-reformation ' resets the follower's goal

to the leader so that formation flying can be resumed. "Follower-assignment" coordinates
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, /
i7independent-solo ~ /
/
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Figure 4.14. Cruise Phase.

leader and follower mission assignments. With these rules, team players move in unison
toward a patrol station, separate to fly opposite sides of a patrol area, and rejoin to
address threats or prosecute new missions.

4.3.4. Search Phase. The Search phase is depicted in Figure 4.15. Aircraft enter
Search phase upon reaching a waypoint and conduct a long range search. Radar range in
Search phase is double that of any other phase to simulate pilot concentration on a search
task. If no targets are detected, aircraft erase old target data from their target list, return
to Cruise phase, and proceed to the next waypoint. The "follower-search" rule ensures
follower aircraft fly waypoints in a different order than leader aircraft during CAP-station

assignments. The "follower-message" rule generates a message template from leader to
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follower-search /———)

Figure 4.15. Search Phase.

follower aircraft so that cruise reformation rules activate. If a target is detected while in
Search phase, a player's phase changes to Identify phase.
4.3.5. Identify Phase. If a potential target is detected, aircraft enter the Identify

phase. The Ideatify phase is depicted in Figure 4.16. Targets not currently on the target-

| SEARCH |

<
~>] CRUISE |

‘( target-data

BT oyt
‘ v udentufy-to-tntan /
27 identify-to-refuel_[—"—) REFUEL

PRE-ENGAGEMENT
[ |

7 identify-to-recall /———>]  RECALL
_ ./ Identify-to-cruise ﬁ)
commitment % 7identify-highest-priority /
iyfidentwy-to-pursun/:——ﬂ PURSUIT |

i follow-me /

[ INTERCEPT |

Figure 4.16. Identify Phase.
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name list cause change into the Pre-Engagement module to reassess target data and gauge
whether to enter an intercept trajectory. If the potential target turns out to be either
neutral or on the same side, control returns to the Cruise phase. If commitment to a target
is deem.d necessary by Pre-Engagement ruies, phase changes to Intercept phase.

4.3.6. Tutercept Phase. Oace in Intercept phase, both the Engagement-Strategy
and Intercept-Geometry decision modules become active. Players select a strategy and
plan an intercept trajectory. Intercept trajectories are based on three elements: aircraft
location, target location, and victim location (or target's intended target). Players begin an
intercept route once an intercept plan is created. Intercept phase ends when the aircraft is
within 50 units of the potential target, at which point phase changes either to Chase or
Pursuit phases. Before a transition out of Intercept phase, players update a bingo plan that

guides them to a refueling point. The Intercept phase is shown in Figure 4.17.

| IDENTIFY |

v

| PRE-ENGAGEMENT

[

ENGAGEMENT [«
STRATEGY

( mteto-tltan ~>»  CHASE
intercept-to-pursuit /~———>{  PURSUIT
7/intercept-strategy /
255/ plan-intercept /
2/ use-intercept-plan  /
intercept-to-waypoint /
7 tollow-the-leader ~ /
check-bingo-plan  /
&7/ end-intercept-phase /1
%‘23277 next-intercept-point /
Uﬁi’?ﬁ,f next-follower-point  /
- 7 tollower-solo /

% Ag’; follower-assignment Z—’
G5 follower-refor’natlon /
Qa/fk Y RS

INTERCEPT
GEOMETRY

Figure 4.17. Intercept Phase.
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4.3.7. Chase Phase. If a potential target turns and runs, aircraft entei the Chase

phase. In Chase phase, aircraft pursue targets to the border and then return to a patrol

mission in the Cruise phase. If the target turns toward the aircraft, phase changes to

Pursuit or Engage phase depending on target distance. If a higher priority target enters

centroiled airspace, aircraft break off the chase and address the new target. The Chase

phase is modeled in Figure 4.18.

| INTERCEPT

—
l

ENGAGEMENT
STRATEGY

Dl
shase-to-titan

oy

&7 check-formation

5/ chase-the-target

/
wee/ monitor-target ? ~—>  CRUISE
chaseto-criiss /| (—>  SEARCH
chase-to-pursuit /- > PURSUIT
chase-to-engage  / > ENGAGE
chase-to-breakoff  / > BREAKOFF
7/ chase-to-refuel /- > REFUEL
7 chasa-to-recall > RECALL
ww o / end-chase-phase
%1 end-follower-chase /L—J
&%%f'}/chase-the-leader /
/

"
Ay
SR s

Figure 4.18. Chase

Phase.

Three cooperative rules define the leader/follower relationship in the Chase phase.

The "check-formation" rule quenes the =ngagement-Strategy decision module for a

formation the follower should use. Once a formation is assigned, followers "chase-the-

leader” as the leader executes an attack sequence. When the leader returns to Cruise

phase, followers end their chase aad also return to Cruise phase. The Chase phase allows

followers to more aggressively conduct basic flight maneuvers than when in Cruise phase.
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Followers can also switch to Engage phase if leader aircraft get into trouble or new threats
come within detection range. Staying close to Engage phase obviates the need for a
Search-Identify-Intercept sequence on the part of followers.

4.3.8. Pursuit Phase. Once within range of the target, leader aircraft enter pursuit
phase while follower aircraft chase along in formation. The Pursuit phase is shown in
Figure 4.19. Pursuit rules check the pursuit method and calculate an appropriate fly-to
point, speed, and altitude. Aircraft move from Pursuit to either Engage or Evade phase
and back again as aircraft "jockey" for position. Transition from Pursuit phase depends
primarily on distance from the target. Detailed discussions of Pursuit phase rules are given
by Hluck (Hluck, 1993).

4.3.9. Engage Phase. The engage phase is a highly dynamic and complex module.
Aircraft consider lead, pure, and lag pursuit as a precursor to gaining a position

advantage. Complex maneuvers are executed depending on approach and response of

Y lead-pursuit-speed

| INTERCEPT
| CHASE
A 5 S L S 0 EA0)
( PURSUIT
:: pursuit-to-evade-1,-2
i pursuit-to-enga:ej/q——)r ENGAGE |
— | B /pursuittochase  / ’
— =iy pursuit-to-titan /
P! I &/ checkstrategy  / L)F EVADE |
ENGAGEMENT, |l check-criteria /
ST_RATEGY i/ chieck-assignmert  /
E&VﬁfoNESNT :*“ long-distance-lead-pursuit /
f‘g”‘s’@”/ lead-pursuit /
2 g lead-pursuit-point /'
70 7
/

Figure 4.19. Pursuit Phase.
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target aircraft. Optimal speed and altitude is calculated for best advantage. In depth
discussion and analysis of the Engage phase is detailed by Hluck (Hluck, 1993).

Follower aircraft, in the mean time, execute one of three strategies. In the fighting-
wing strategy, follower aircraft try to follow the leader through all maneuvers. In the
dual-attack strategy, follower aircraft remain in orbit around the engagement and warn the
leader when new targets approach. In the loose-deuce strategy, follower and leader take
turns engaging a target until one gains a position advantage.

Leader aircraft can call for a cooperative maneuver from a follower. If both leader and
follower are in position relative to a target, the leader can call for a "split-turn" maneuver,
also called an "offensive split” (Shaw, 1985:204). The aircraft gaining a position

advantage becomes leader and changes phase to the Acquire phase.

l CHASE i

el ~—>{ PURSUIT
-/ engage-to-evade-1,-2 /) r--) ACQUIRE
7 engage-to-avoid Va y > AVOID

/ engage-to-acquire-1,-2 /]

”engage-to-pursuit —

WEAPONS
EMPLOYMENT

nose-to-nose-tum
oy lead-tum
i separation-tum

\\\\\\\\\K\\\\\r

Figure 4.20. Engage Phase.
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4.3.10. Acquire Phase. The primary purpose of the Acquire phase is to lock a
missile onto a targét {(Hluck, 1993). First, a missile is instantiated and begins a launching
sequence. Second, the aircraft must keep the target within the missile's launch envelope.
And third, the aircraft must break away if either the target moves out of the launch
envelope or a new threat is detected. Figure 4.21 shows the Acquire phase. The normal

transition is to the Fire phase where missiles are launched.

| ENGAGE |
A v }
) ) R BREAKOFF |
cquire-to—titan /
acquire-to-fire FIRE |

acquire-to-breakoft
acouire-to-engage  /
lag-pursuit /
4 pure-pursuit /
WEAPONS :
EMPLOYMENT . lead-pursuit Z
i default-manauver  /

speed-control

S

Figure 4.21. Acquire Phase.

4.3.11. Fire Phase. The primary purpose of the Fire phase is to release the missile
aimed at a target (Hluck, 1993). Once released, the missile becomes an independent entity
and follows basic flight rules to the target. The Fire phase is shown in Figure 4.22.
Missiles remain in Fire phase throughout their flight. The aircraft switches to Analyze
phase and monitors the missile as it pursues the target.

Missiles may run out of fuel and expire, detonate when they come within a designated
kill radius of the target, or switch goals if another aircraft moves across its flight path. If a
missile runs out of fuel, it is deleted from the simulation. If a missile detonates near the

target, both the missile and target are deleted from the simulation. If a second aircraft
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comes within the launch envelope of the missile and is closer than the original target, the
missile will switch goals and pursue the closer aircraft. In any case, the missile accesses

Weapons-Employment rules so that the originating aircraft can decide what to do.

| ACQUIRE

BREAKOFF
ANALYZE

WEAPONS
EMPLOYMEN

POST
I ENGAGEMENT

1]

SANNNNN

Figure 4.22. Fire Phase.

4.3.12. Analyze Phase. The Analyze phase performs two functions (Hluck, 1993).
First, the aircraft monitors missile progress toward a target. Missile effectiveness is
gauged by judging whether the missile hits or misses the target. If the missile hits the
target, then the aircraft returns to Search phase to seek a new target. If the missile misses,
aircraft return to the Engage phase and re-engage the target. If a new threat appears,
aircraft change to the Breakoff phase and address the new target. The Analyze phase is
depicted in Figure 4.23.

4.3.13. Breakoff Phase. Once in the Breakoff phase, aircraft need only determine
whether to return to the engage phase or disengage completely (Hluck, 1993). Figure
4.24 shows the Breakoff phase. Aircraft re-engage if a missile fails to destroy a known

target, but disengage if a new threat appears. If the threat is a missile, aircraft change

4-22




SEARCH |
ENGAGE
BREAKOFF

WEAPONS 123

EMPLOYMENT 7
POST

ENGAGEMENT Z

/

Figure 4.23. Analyze Phase.

phase to the Avoid phase. If the threat is composed of opposing aircraft, then a phase
change to Evade phase occurs. Conditions causing the change to Breakoff phase guide

further transitions in both Avoid and Evade phases.

e
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CHASE ACQURE ]
(i D R

BEQK"FF ~—>{ ENGAGE

7 breakoff-to-avoid —>  AVOID
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%“y breakoff-to-engage /— EVADE
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*~7 run-point
%/ tun-and-run-faster /

(it B sy YRR NG

Figure 4.24. Breakoff Phase.

4.3.14. Avoid Phase. The Avoid phase is designed to activate missile avoidance
rules (Hluck, 1993). The difference between aircraft evasion and missile avoidance lies in

maneuvering tactics. While aircraft evasion tactics involve turning away from a potential
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threat, missile avoidance tactics call for a turn toward the threat (Shaw, 1985:59). The
Avoid phase executes rules designed to cut across the path of a missile. This method
increases maneuvering requirements on the missile since it travels much faster than an
aircraft. Using crossing maneuvers is analogous to adopting the "angles" fighter strategy
in aircraft combat maneuvering. Once the missile is avoided, aircraft return to either
Search or Engage phase to address the source of the missile. The Avoid phase is

illustrated in Figure 4.25

BREAKOFF ——W
EVADE

]

ENGAGE |

SEARCH ]

2

/

./ jink-maneuver

Figure 4.25. Avoid Phase.

4.3.15. Disengage Phase. The Disengage phase prosecutes a complete withdrawal
from an engagement (Hluck, 1993). One of several reasons can prompt a disengagement.
Low on fuel, out of missiles, mission time expired and other criteria dictate escape from
the immediate combat area. Currently, only 2 bingo plan can be used to egress an
engagement. Future simulators would need to complete an egress plan to properly
execute a retreat. The Disengage phase is shown in Figure 4.26.

Cooperative rules in the Disengage phase coordinate leader and follower aircraft. If
the Jeader disengages, followers resume flight formation and follow the leader out of an
engagement area. If a follower must disengage, e.g. due to low fuel, the follower signals

the leader who, in turn, disengages and returns with the follower provided disengagement
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criteria in decisicn modules are satisfied. If criteria are not satisfied, leaders and followers

begin reireats independently and rejoin either at the refueling point or home base.

| BREAKOFF |~

%3 k\}) Ay A‘(’-"%}}t}
- "'"_"_" DIENGA%
r &\?5' disengage-to-retreat /—>{ RETREAT
Xdisengageoto-refuel A~—r—>  REFUEL
) f%f disengage-to-recall /;-—> RECALL
WEAPONS 1! § ;’gw clisengage-follower /"—’
EMPLOYMENT | 5 117/ disengage-leader  /——
POST (% }f{’ disengage-to-titan ~ /
ENGAGEMENT '??5‘” / chack-disengags-criteria_/

ﬁ%})

Figure 4.26. Disengage Phase.

4.3.16. Evade Phase. The Evade phase is designed for aircraft v . . ying not
to be detected or who are trying to reverse a position disadvantage. Evade phase is the
complement of Pursuit phase. Where Pursuit phase attempts a pursuit offense, Evade
phase attempts a pursuit defense. The Evade phase is shown in Figure 4.27 and is

discussed in depth by Hluck (Hluck, 1993).

PURSUIT
REFUEL ~

. evade-to~engage-
7 evade-to-engage-z

g—){ ENGAGE |

/> AvOoD |
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Figure 4.27. Evade Phase.
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4.3.17. Retreat Phase. The Retreat phase heralds the end of a pursuit beyond the
border. Aircraft entering retreat phase have one of three options. If an opponent leaves
controlled airspace, players return to Cruise phase and resume the mission they had at the
beginning of an engagement. Aircraft low on fuel change to Refuel phase and proceed to
the nearest bingo field. The normal transition takes players to the Recall pliase. Figure

4.28 illustrates the retreat phase.

| DISENGAGE

o T SEILTND
P RRITLT, Dol 33 )
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retreat-to-refuel  ~——>  REFUEL

%27 and-retreat-phase RECALL
ey

Figure 4.28. Retreat Phase.

4.3.18. Refuel Phase. Players in the Refuel phase create and execute a bingo plan
according to the rules shown in Figure 4.29. The bingo plan is a route plan similar to
patrol or CAP station plans, but waypoints are calculated based on location within the
grid. Players have knowledge of two possible refueling points: the tanker and the base.
The bingo planner plots a two-stage route back to both locations. ;I‘lle first stage takes
players to waypoints due north or south of the refueling point. The second stage takes
players back to the refueling location. Players select the shortest route sincé by this time
they are low on fuel. Once refueled, players return to their original mission.

4.3.19. Recall Phase. Players in recall phase return to the base and land unless they
have fuel to resume a cruising mission. When aircraft have more than S0 units of fuel and
there are more than 100 time steps remaining in a simulation run, aircraft cruise toward
the CAP-station and resume a CAP-station plan. Otherwise, aircraft return to their home

base by changing to the Landing phase. The Recall phase is shown in Figure 4.30.
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Figure 4.30. Recall Phase.

4.2.20. Landing Phase. Players in the landing phase follow a pre-defined plan to

put them on the runway. Landing plans are route plans with special waypoints. Each

landing plan has an approach, glideslope, and touchdown waypoint to guide players down

to the runway. The "separate-landing-goals" rule changes follower aircraft into solo
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aircraft so that cooperating players land independently of leaders. Once on the runway,
players slow to a stop. When stopped, the mission assignment slot is labeled "completed”
and players return to the New-Mission phase to get new mission assignments. Wher a
simulation run has less than 100 time steps remaining, all aircraft in the simulation return

to land at their home base and the simulation ends.

CRUISE
RECALL

S5 use-landing—plan
; separate-landing—goals

ANANRNANANAN

e"""a"d'"g’phase 74———>|NEW-M|SSION]

7 next-landmg-pomt
L o

Figure 4.31. Landing Phase.

4.4 Decision Module Dynamic Models.

Decision modules implement key decisions made by pilots in aerial combat situations.
Each module addresses one of six decision areas defined in the Titan report (Titan, 1986).
Decision areas range from pre-engagement to post-engagement determinations. Key
parameters needed to make decisions are coded as object slots in PDPC. Module names
reflect the decision area corresponding to the Titan report. Module names and their
connection to Titan report decision areas are summarized in Table 3.1, but are repeated in

Table 4.1 for convenience.
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Table 4.1. Decision Modules.

Decision Module Titan Report Decision Area

Pre-Engagement Pre-Engagement Decisions
Engagement-Strategy Engagement Stratcgy Determination
Intercept-Geometry Intercept Geometry Determination
Weapons-Employment Weapons Employment Strategy Determination
Counter-Action Response to Hostile Counter Action
Post-Engagement Disengage/Re-Engage Strategy

4.4.1. General Description. Decision modules are called from phase modules
when a player requires deeper reasoning than offered in each phase. For example, when a
player detects a target, but does not have an intercept plan, the Intercept-Geometry
module is called to make an intercept plan. If a plan already exists, that plan is
implemented which avoids the time cost of re-planning. Players call a decision module by
asserting a fact on the fact list to "check" the module needed. A rule in each phase
module detecis the fact and fires to invoke a focus onto the decision module.

Each decision module is composed of several sub-modules depending on the specific
decision needed by a player. If a player has the wrong radar settings for a phase, then a
fact to check radar is placed on the factlist. The syntax for a radar check fact is:

{check (type radar) (player name) (module Pre-Engagement))
which fires the rule opening the Pre-Engagement module. Rules in the decision module
key on the type of check and the player's name to determine which decisions to make.
The type of check dictates which sub-module rules are used. Rules 1n other sub-modules
are ignored. Check facts act to restrict rule firing just as object phase slots control phase
module selection.

4.4.1. Pre-Engagement Module. The Pre-Engagement module makes decisions
needed before engaging a potential threat. Figure 4.32 shows the dynamic model for the
Pre-Engagement module. Three sub-modules check radar settings, target data and

commitment decisions.
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Figure 4.32. Pre-Engagement Module.

4.4.1.1 Radar Sub-module. The radar sub-module turns radar capabilities on
or off depending on the phase of a player. If a player's phase is not New-Mission, Launch,
or Landing, then the radar should be on and in search mode. Players also switch the radar
to fire control or clear 2 jammed radar by returning to Pre-Engagement rules. Although
players should be well passed the pre-engagement stage when needing fire control, return
to the Pre-Engagement module consolidated similar rules, prevented rule duplication and
allowed dual usage of rules such as the "search-radar" rule.

4.4.1.2 Target Data Sub-module. The target-data sub-module assesses the

threat level of any moving target within radar range. Target data is stored in object slots
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as lists for later recall. For each potential target, a player records the target's name,
potential victim, threat level, and priority. When all targets have been assessed, the player
sorts target data according to priority and addresses the first threat on the list. If the
player is a member of a team, target data is shared so that team-mates avoid the cost of
calculating threat levels.

The process begins with the "same-sides" rule where a player determines whether a
potential target is on an opposing side. Then the player determines the intent of the target
by assuming that the potential victim is the object on the player's side most directly in the
target's path. The threat is estimated by assigning value to parameters such as the target's
intention, distance, speed, altitude and location. The player associates a threat level of
"high", "medium", or "low" with the target. Priority is calculated based on the target's
threat level, type (e.g. fighter, tanker, bomber, etc.), range and direction with respect to
the player. A fighter that is nearby, approaching, and has a high threat level receives a
high priority.

Team members correlate target data with other team members. If the leader has no
knowledge of the target, the follower's target data is passed to the leader. Otherwise, the
leader's target data is selected over the follower's.

A player can call for additional support from the home base. When the number of
targets exceeds the number of missiles carried, players assert a "Send help!" message unto
the factlist. The form of the message is:

(message (from player) (to base) (channel #) (content SEND HELP!})
where player is the name of the sender, home-base is the name of the player's base,
"channel" indicates which radio channel is used, and "content" holds the message text.
Message facts cause the simulator to focus into a communications module where each
message is processed. In the case of the "Send help!" message, the home base

acknowledges the message by retracting the message fact. Future PDPC versions could
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launck aircraft iu response to calls for help. The current version uses the message to
coordinate players on the same side. Regardless of leader or follower status, if a player
calls for help and anotner p:. - :r on the same side "hears" it, then the receiving player is
assigned to be follower and the sender becomes Jeader. The new follower proceeds
toward the icader's lucation to provide support.

4.4.1.3 Commitment Sub-module. The commitment srb-module controls
player response to a threat. A key decision identified in the Titan report determined when
a pilot should commit to pursuing a potential target. Air combat pilots used several
parameters to judge the commitment point that would result in the greatest advantage.
Rules in the Commitment module currently operate at a simpler level. Instead of iudging
the greatest advantage, commitment rules fire when a condition is met. For example, the
commit-on-distance rule fires when a target reaches a range equal to five times the closing
velocity. Commitment rules fire when opposing aircraft violate airspace boundaries, move
toward or fire a missile at the player making the commitment decisicn. A player can fire a
commitment ruie when reinforcements arrive, or by reaching an intercept point, desired
altitude or speed. When a rule fires, the player's goal changes to the target and the player
moves into Pursuit phase. _

Commitment rules can be delayed if a potential target does not satisfy one of the
commitment rules, or short-circuited if a player has already ¢engaged the target. The
"recheck-now" and "recheck-later" rules work to deiay a commitment decision for five
iterations after an initial commitment check. If the initial check results in no commit rule
firing, a fact to recheck the target later is placed on the fact-list. If the player re-enters the
Pre-Engagement module, commitment rules will be clobbered for five iterations and the
player will continue executing in the current phase. Commitment decisions can also be
made in phase control modules under certain conditions. For example, if a player

identifies a new target that has a high threat level, the player's phase changes to Pursuit
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phase without checking commitment rules. Otherwise, players check commitment rules

before entering an engagement.

4.4.2. Engageinent Strategy Module. The Engagement-Strategy module selects a

formation, approach and strategy to vse against an adversary. Figure 4.33 shows the

dynamic model for the Engagement-Strategy module. Three sub-modules check

approach, tactical coordination and formation. Rule firings result in a selection written to

an object slot rather than a phase change as described in the Pre-Engagement module.

Resulting slot data is used in phase sequence modules to direct or coordinate player

actiona.
i {
i f&mggm’&% TRLER wmawﬂi ,?;*wy 77
EN GAG EMENT-&TRATEGY ENGAGEMENT-STRATEGY
’@ R s T Ty W% % 37 AN IOk o

formatlon

oy

strategy
T & SHEBLIRIL SR
+/ echelon-formation

: W '/ sprazd-formation
2 traul-formatlon

%7 underneath-approach

/
/ same-approach /
/

energy-fighter

: ;wjfswitch-player-role

o
same-coordlnatlon

Figure 4.33. Engasement Strategy Module.
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4.4.2.1 Strategy Sub-module. The strategy sub-module determines which of
the other sub-modules will be invoked. If the player calling for engagement strategy
decisions is a solo fighter, then only the approach sub-module is used. If the player has a
leader role, then all three sub-modules are called. If a player is a follower, then the first
call to Engagement-Strategy prompts the leader to dictate an approach, formation and
tactical-coordination. Subsequent calls by the follower do not prompt the leader unless
the leader changes phase. Until a leader change occurs, the follower performs the same
approach, formation and coordination as initially assigned.

4.4.2.2 Approach Sub-module. The approach sub-module determines the
direction a player is using tc pursue a goal or the energy state a player has relative to an
engaged target. For leaders and solo players, the approach identifies whether the player is
in front of, behind, off to one side, above, or below the target. Followers use a default
rear quarter approach to get into a flight formation, prompt the leader for an approach, or
use the same approach as initially given. Players in Engage phase also consider current
energy relative to their assigned target. The "energy" or "angles" fighter strategy identifies
whether a player shoulc use high speed or high turn-rate tactics. Determination is based
on the specific energy and excess power equations defined by Shaw. (See Appendix B)

4.4.2.3 Tactical Coordination Sub-medule. The tactical coordination sub-
module selects one of the dual-playes strategies defined by Shaw (Shaw, 1985). The
fighting wing role dictates that follower aircraft stay in formation on the leader. Dual
attack and loose deuce strategies use the follower as an additional attacker. Each strategy
determines what phase a follower should use while the leader engages a target. With a
fighting wing role, followers stay in Chase phase and chase the leader. With a dual attack
role, followers stay in Intercept phase and travel between orbit points of an intercept plan.
In the lcose deuce role, votk. leader and follower eugag. the same target with the piayer

having the greatest advantage taking the lead roi«. The "switch-player-role” rule changes
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leader and fellower roles when lcose deuce coordination is used and the follower has a
better position advantage on the target.

4.4.2.4 Formation Sub-module. The formation sub-module dictates how a
follower should fly in relation to a leader. Seiected formations depend on the phase of the
leader. For example, when the leader is in Cruise phase, the follower flies in echelon
formation. The "engage-formation" rule selects a formation depending on tactical
coordination as well as leader phase. For example, a leader in Engage phase declaring a
tactical coordination of fighting-wing puts the follower in trail formation. Loose deuce
strategy takes the follower cut of formation (assigns a "none" formation). Given the
leader does not change phase or tactical coordination, the follower uses the same
formation as initiaily assigned.

4.4.3. Intercept Geometry Module. The Intercept-Geometry module plans a path
from a player to a goal. Four types of plans were anticipated, but only two were fully
impleinented: intercept and bingo plans. Ingress and egress plans are primarily designed
for offensive missions which were not needed at this stage in the research. The Intercept-
Geometry module is depicted in Figure 4.34.

4.4.3.1 Intercept Plas; Sub-module. The intercept planuer computes a series
of waypoints from a player's current position 10 a target's predicted position. The
intercept pianner ases history object location deta to project an intercept point along the
target's path. Players move toward the intercept point as a goal rather than the target's
location. Along the intercept route, the planner identifies “"free fire areas” a player should
avoid. A free fire area is a ground statien that has permission to fire at any flying object.
The intercept planner defines intcrmediate waypoints directing playess around designaied
free fire areas. Startiag, intermediate, and intercept points 21 stored as slot data in a
intercept plan object. Players follow the intercept plan point-by-point until either reaching

the intercept point or a commitment ruje fires. Back in the Intercept phase module, if a
pltp ptp
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Figure 4.34. Intercept Geometry Module.

player arrives at an intercept point and is near the target, phase changes to Pursuit phase.
If the target moved out of radar range, the pleyer returns to Search phase.

4.4.3.2 Bingo Plan Sub-module. The biiigo planner computes a series of
waypoints from a player's current position to a refueling location. This planner plots six
intermediate points based on the location of the player, base and tanker. Each point lies
on a line stretching due north or south of a refueling point depending on whether the

player is north or south. Three waypoirts are placed on each refueling line, one level with
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the player's north-south location, one closer to the refueling point an one farther away.
The player selects the shortest path to a refueling point unless an opponent player lies in
that path. Then the player chooses an alternate waypoint or alternate refueling point.
Waypoint data is stored in a bingo-plan object.

4.4.4. Weapons Employment Module. The Weapons-Employment module
assigns targets, selects weapons, and considers engage/disengage criteria. Three sub-
modules compartmentalize decision rules: target assignment, engage criteria and weapons

selection. Figure 4.35 illustrates the Weapons Employment module.
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Figure 4.35. Weapons Employment Module.
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4.4.4.1 Target Assignment Sub-module. The target assignment sub-module
identifies and assigns primary and secondary targets and assigns team strategy goals. Ina
multiple target scenario, the discriminate-targets rule determines which target should be
pursued. A lower priority target could be pursued if it is closer, approaching, and in front
of the player discriminating targets. Otherwise, the player is assigned and pursues the
higher priority target. A dual primary target assignment occurs when leader and follower
aircraft engage two opponents. The leader takes on the primary target while the follower
addresses the secondary target. Followers could also receive goals depending on tactical
coordination. Currently, followers assume an orbit around a leader's engagement when
the tactical coordination is either loose-deuce or dual-attack. When the tactical
coordination is fighting-wing, followers chase the leader regardless of the leader's phase
even when the leader engages a target.

4.4.4.2 Engage Criteria Sub-module. The engage criteria sub-module
determines whether a player should engage a target or disengage and retreat. Players
consider both engage and disengage criteria to prevent searching two modules for a single
rule. Disengage criteria are also considered in the Post Engagement module. Players
engage a target if in pursuit, within range, and no disengage rule fires. Criteria for
disengaging include stopping at the border, running out of missile or fuel, or being
outnumbered by opposing forces. The "swap-roles" rule fires if a leader has disengaged
and the follower is available to attack the arget. In this final case, the follower becomes
leader and the leader becomes follower.

4.4.4.3 Weapons Selection Sub-module. The weapons selection sub-module
activates and deactivates missile objects during an engagement. Missile objects are
instantiated when a player changes from engage to acquire phase. Players must maintain
target acquisition for five iterations before a missile actually fires. During that time the

target may move out of the launch envelope and the missile should not be fired. Weapons
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selection rules either reactivate missile objects if a player tries to re-acquire a target, or
delete missile objects if a player disengages. Missile objects also delete when detonated.

The launch envelope rule adjusts missile launch range and angle depending on the
target's relative location and velocity. When a player closes on a target, missile launch
range increases simulating an early launch opportunity. Launch range decreases when the
target is escaping. Launch angle varies depending on the target's crossing velocity. The
crossing velocity estimates the angular rate of change in the line of sight. If the target is
crossing the player's field of view from left to right, the launch angle adjusts to the left. A
target crossing from right to left adjusts the angle to the right. Adjustments to launch
range and angle simulate early launch opportunities and prevent late launches.

4.4.5. Counter Action Module. The Counter-Action module contains instructions
on how to avert an attack. Currently this module is not fully developed. Development
efforts concentrated on engagement maneuvers and tactics rather than evasive maneuvers.
Simple rules employ electronic countermeasures, assert facts that dispense chaff or flares
during a missile attack, or accelerate players in close range of a missile. The Counter

Action module is shown in Figure 4.36.
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Figure 4.36. Counter Action Module.

4.4.6. Post Engagement Module. The Post-Engagement module, shown in Figure

4.37, contains rules guiding a player to a new target assignment. The "target-destroyed"
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rules clean up a player's target list and prevent a re-engagement. "Missile-missed" rules
determine whether a players re-engage a target or retreat. The "team-missile-missed" rule
swaps leader and follower roles when the follower has more missiles left than the leader.
“Check-known" and "check-unknown" return players to Identify and Search phases,
respectively. Detailed disengage criteria is also contained in the Weapons Employment

module and was not duplicated in the Counter-Action module.
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Figure 4.37. Post Engagement Module.

4.5 Functional Model.

This section describes the functional model of PDPC. Since the simulator is extensive
(over 400 rules), and since CLIPS processes each rule the same way, this section discusses
only a general model. In the following diagrams, italicized text represents CLIPS
constructs while non-italicized text represents PDPC constructs.

4.5.1. Typical Rule Model. The functional model of a typical CLIPS rule is
depicted in Figure 4.38. A rule construct basically consists of a predicate statement to

determine rule validity and a consequent statement to perform some action or actions.
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The predicate statement is called the "left-hand side" of a rule and constitutes the "if"
portion of an "if-then" construct. The consequent is called the "right-hand side" and
constitutes the "then" portion. CLIPS pattern-matches each conditional element in the
predicate statement to data elements drawn from either the factlist or object slots. When a
conditional eleme:. requires processed data values, CLIPS calls appropriate functions and
compares the results. If all conditional elements are satisfied, the rule “fires" and executes

the actions in the consequent statement.

PLATFORM

(slot ?state) (slot 7new-state)
(stot ?phase) (slot 2new-phass)
( function-1 (fact ?value-2 retract )
rule-name (salience)| T/E ' funcion-3 )
7out-2

( function-2 function-4

(fact ?value-1) (fact ?value-3) D
(fact ?value-2)

FACTLIST

Figure 4.38. CLIPS Rule Functional Model.

Actions in the consequent statement modify data elements or execute functions
depending on the requirements of the rule. When a rule fires, object slot data is changed
and facts are added to {or retracted from) the factlist. Functions on the right-hand side
execute system calls and simulation updates, or collect more data to process the rule. The
predominant method in PDPC is to modify object slot data.

4.5.2. Main Module. The main module controls the simulator's progression by
resetting player states to "moveable" once every player has moved. Each player object can
have a state of "moveable”, "move", or "moved" (refer to Figure 4.39.) A player in the

moveable state has access to every rule in PDPC depending on phase. When rules fire, the
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player's state changes to "move" which prevents further phase rule firings and makes the
player eligible to fire the move-player rule. Once a player moves, the player's state
changes to "moved". If the "move-player" rule detects that every player in the simulation

has moved, the fact "(everybody moved)" is placed on the factlist.
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Figure 4.39. Main Player Mevement Rule.

When "(everybody moved)" appears on the factlist, the "iterate” rule (see Figure
4.40) begins the process of resetting the simulator for another move. The fact that
everybody moved is retracted, the iterate step is decremented to n-1, every platform
receives a state of "moveable”, and the "focus-control" rule is refreshed. The "focus-
control” rule will fire once for every moveable platform in the simulation. When fired,
CLIPS accesses a module corresponding to a player's phase and pattern matches on the
module's rules. If "focus-control” is not refreshed, CLIPS halts the simulation after
passing once through PDPC. The combination of "move-player", "iterate”, and "focus-

control" drive PDPC simulation rurs through many iterations.
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Figure 4.40. Main Simulation Driver Functional Model.

4.5.3. Phase Modules. Rules in each phase module follow the functional flow of
typical rules as shown in Figure 4.41. Rules draw on platform slot data to calculate
predicate values on the left-hand side. For rules to fire, specific aircraft must be moveable
or appropriate facts must appear on the factlist. Each phase module contains three types
of rules. First, rules that change a player's state to "move" prevent further rule firing and
return control to the Main module. Second, rules that act in concert either change object
slot data or assert facts onto the factlist, but control is retained by the phase module.
Third, rules requiring further decision use the CLIPS focus function to focus on decision
modules and fire more rules. In each case, modified data is returned to object slots so that
other aircraft can use the rule.

4.5.4. Decision Modules. Rules in each decision 1=odule follow the functional flow
of typical rules and each module contains the three rule types as described in Paragraph
4.5.3, but control flow is slightly modified. When a decision module relinquishes control

because no further rules are eligible to fire, control returns to the phase module that called
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it rather than to the Main module. Rule firings in a decision module may change a player's
state so that phase module rules can fire when previously they could not. Decision rules
that change a player's state, however, cause control to pass through the phase module and
back to the Main module.

4.5.5. Concurreacy in Modules. CLIPS uses all platform objects to test predicate
constraints on rules. When using a phase or decision modules, CLIPS fires all rules having
satisfied constraints regardless of a player's state. So, for example, if four aircraft have a
phase of Cruise, CLIPS will fire four "cruise-to-waypoint" rules before returning control
to the Main module. Operation proceeds sequentially through phases, but concurrently
through objects. Concurrent operation conserves execution time of rules such as "focus-

control" since modules are not accessed individually for each object.

4.6 Cooperative Player Implementation Issues.

4.6.1 Missile Goal Swapping. When developing missile scoring rules I found a
model of cooperative response. In the Fire phase, missiles are given the name of a target
to pursue. Although this approach used perfect information, giving the missile the name

of the goal saved time in developing complex sensor rules and procedures. To explore
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cooperative capabilities, modified rules gave missiles the ability to change goals depending
on which player was closest to its nose. The same approach was used to consider when
cooperative players should swap leadership roles.

4.6.2 Detecting Disadvantage. The key to initiating a role change was in
detecting when a role change was warranted. Missiles swap goals depending on which
p-ayer is closest to its nose. Cooperative players swap roles using a similar mechanism. In
one rule, players swap roles depending on which player is farthest from an opposing
player's nose. In another, players swap roles depending on which player has the target
closest to its own nose. The former case detects a disadvantage while the latter detects an
advantage. Either case warrants a role change depending on the strategy employed.

4.6.3 Aircraft Role Swapping. Once a role change was deemed necessary, players
swapped leader for follower roles depending on the strategy employed. - Except for the
fighting wing strategy, cooperative followers assumed the leader role and leaders assumed

follower roles. The task of changing roles consisted of writing data into object slots.

4.7 Summary.

The PDPC uses object-oriented design techniques in a2 knowledge-based system to
implement an air combat simulator. The object design contains 13 classes and sub-classes
describing aircraft, missiles, air bases, and flight plans. The overall architecture follows a
linear sequence of phase modules with each module representing one stage in an air
combat mission. Detailed planning and decision-making continues in a battery of decision
modules. Rules within each module simulate the decision-making process combat fighter
pilots use during air combat engagements. Both solo and team tactics and strategies are
built into rules within each module. The architecture and design allows PDPC to simulate

various types of air combat scenarios.
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S. Results

This chapter details -esults of using rules designed to elicit cooperative behaviors
from team players. Simulation test runs used various mission scenarios to demonstrate the
capabilities of PDPC from single aircraft test flights to two versus two combat
engagements. This approach provided a basis on which to analyze the effects of
cooperative rules and compare the performance of cooperating versus non-cooperating
agents. This chapter presents and analyzes some of those test runs.

Cooperative player rules changcd the character of multi-aircraft scenarios. Players
having a leader-follower relationship traded roles depending on advantages perceived
against an adversary. The cooperative player having the greatest position advantage
assumed the leadership role. Scenarios changed in character because cooperative team
players did not react identically to the same threat. Cooperative players demonstrated
different team behaviors compared to that of independent players.

Sections 5.1 through 5.4 descﬁbe the performance of "{riendly" aircraft when
presented with various threat scenarios. In each series of tests, n~~formance of different
combinations of team players are compared to different combinauons ¢ .’ threats. Section
5.1 introduces the "playing field" and describes what players do under non-adversarial
conditions. Section 5.2 defines the combat scenarius used to demonstrate the differences
between cooperative and independent players. Section 5.3 presents results of aircraft
attempting to target and destroy drone aircraft. Section 5.4 illustrates performance of
aircraft versus a single defensive target instead of a drone. The variety of engagement
scenarios highlights the effects of rules designed to produce cooperative behaviors in

autonomous agents.




Section 5.5 spotlights the performance of cooperating players in executing team
maneuvers. In this section a "split-turn" is analyzed in detail to illustrate the requirements
(and problem areas) of implementing cooperative behaviors in PDPC agents.

The final section of this chapter analyzes system loading data collected during
simulation tests. Although preliminary, results indicate the potential for developing PDPC

into a "real-time" air combat simulation.

5.1 Non-Adversarial Scenario

5.1.1 Purpese. Non-adversarial scenarios illustrated player actions under non-
combat conditions and demonstrated the capabilities of the PDPC flight model.

5.1.1 General Description. One of two different grid definitions identified aircrait
location, speed and other environment relationships. The first grid arbitrarily defined a
1000 by 1000 unit grid over which aircraft move. Aircraft were not restricted to the grid
and occasionally strayed outside defined limits. The intent was to study interaction
between players rather than between player and environment. A second grid defined paths
over terrain maps used by programs in the AFIT Graphics Laboratory. This second
definition attempted to map aircraft movements in relation to terrain features. For
consistency reasons, scenarios in this thesis are illustrated using the first grid definition.

Up to four aircraft, two to a side, were flown in each simulation. Each side, friendly
and enemy, consisted of two aircraft, a home base, and a refueling point. Aircraft moved
through points in the environment. Bases and refueling points were stationed near the
four corners of the grid. Depending on mission scenario, aircraft could move to a combat
air patrol (CAP) station, follow a pre-defined patrol route, proceed to the refueling point,

or return to land at the home base. For clarity, aircraft were labeled "pilot", "partner”,
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"bogey1", and "bogey2". The pilot and partner belonged to friendly forces while the two
bogeys belonged to enemy forces.

Tests were run using different scenarios. The key to which mission was simulated
lies in the mission slot of each aircraft object. If a player had a testing mission, it followed
a prescribed flight test route. The predominant scenario was the defense mission. A
player having a defense mission followed CAP station route plans, but could deviate from
plans when encountering an opposing force. Two forms of defensive mission defined
different types of combat operations: superiority and defense. A superiority mission
allowed aircraft to operate anywhere on the grid. The defense mission restricted aircraft
to one half of the playing grid; the one containing the home base.

The basic scenario for each simulation started and ended at the home base. Upon
startup, aircraft received a route plan based on mission assignment. Leader and follower
assignments applieu only to friendly forces for purposes of comparison. Once a mission,
assignment, and plan were given, aircraft proceeded to launch from their home base and
the prescribed route. If a member from an opposing team was detected, players
considered options to address the threat. High threats were addressed by a player moving
1o intercept the opposing force. Low threats were assessed, but not acted upon. If no
threats were detected, players moved along a route until either tire or fuel expired. When
fuel ran low, players moved to either the refueling station or their home base to refuel.
Players resumed their mission once refueled. When time ran out, all players returned to
their homie station.

5.1.2 Testing Missions. In testing missions, aircraft move along pre-defined routes
and then return to their home base. Opposing forces do not interact. In fact, the only
players that interact are those with a leader-follower relationship. As a flight leader
follows a route plan, a follower flies behind trying to match the leader's speed and

direction. Solo players follow route plans independently which gives the impression of a
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leader-follower relationship, but none exists. Testing missions prosecute without
interruption until players return to their home base.

During tests, players followed planned routes to "patrol" an area of the grid. The
graphs in Figures 5.1 and 5.2 show the paths taken by players during flight tests. Figure
5.1 illustrates the patrol route used by "enemy" forces while Figure 5.2 illustrates the route
used by "friendly" forces. The inconsistent nature of the loops reflects efforts to
incorporate wind and gravity effects. The trajectories of bogey1 and bogey2, however,
are indistinguishable since, as independent aircraft, they fire the same rules in an identical
sequence. In contrast, the erratic path in the "friendly" patrol loop was made by follower
aircraft adjusting to changes made by its leader. Followers fire different rules than leaders

which results in distinctive flight trajectories.
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Figure 5.1. Planned Path of "Enemy" Forces Testing Mission.




The testing mission primarily provided a means of assessing flight control rules, but
also produced a convenient way to define drone aircraft. Initial tests used drone aircraft
to assess approach and attack maneuvers. In developing algorithms to score missile

effectiveness against drones, I found a means of coordinating cooperative players. Details

are discussed in Section 4.8.
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Figure 5.2. Planned Path of "Friendly" Forces Testing Mission.

3.1.3 Defensive Mission Scenario. In the defensive mission scenario, aircraft
defended a portion of the grid. For the purpose of testing, I arbitrarily defined a border
bisecting the playing grid. The southern half was defended by friendly forces while the
northern half was assigned to enemy forces. Aircraft patrolled their assigned half of the
grid searching for opposing forces. If an opposing aircraft entered defended airspace, it

was attacked until it left the airspace. When all threats within defended airspace were
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eliminated, defensive players resumed their assigned patrol plan. Two forms of patrol plan

defined defensive routes: CAP-station and patrol.

5.1.3.1 Combat Air Patrol - Station. A CAP station was defined for each
side in the simulation approximately halfway between a base and refueling point. Aircraft
on patrol initially moved to and then circled the CAP station. While at the CAP station,
players searched for opposing forces and responded depending on the threat to their air
space. Cooperative players positioned themselves on opposite sides of the CAP station
which expanded their effective search range beyond that of a single player. Independent
players followed nearly identical paths, situating themselves in almost identical locations
on each step. Consequently, independernit players had a less effective search capability.

5.1.3.2 Combat Air Patrol - Patrol. After a preset time period, players
patrolled their assigned airspace by changing to a different route plan. Using a patrol plan,
aircraft moved between widely separated waypoints, again looking for opposing forces.
Cooperative players flew in formation while solo players moved independently. At the
transition from station to patrol assignments, rules detecied changes in the leader's
assignment and, in turn, changed the follower's assignmeni. The follower resumed a flight
formation on the leader. After another preset time period, players returned to the CAP
station. The planned routes for patrols followed the testing mission scenario.

5.1.4 Superiority Mission Scenario. Under superiority mission rules, piayers
iniitaily foilowed the defense mission plan, but once an opposing player was detected
superiority aircraft attacked in either half of the grid. Defensive players chased opposing
forces until they left defended airspace. Superiority players pressed the attack, even if the
opposing player retreated.

5.1.5 Offense Mission Scenario. Under an offensive mission scenario, players
initially behaved as drone aircraft. Unlike a drone, an offensive player will defend itself if

attacked. Full implementation of an offensive player was left for future development.
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5.2 Combat Scenarios

To test cooperative rules I used three types of combat scenario: one versus one, two
versus one, and two versus two. A player's use of cooperative rules depended on the
assigned role: leader, follower, or solo. For these tests, "friendly" forces were given
cooperative abilities while enemy forces assumed the role of either drone or solo aircraft.

5.2.1 One Versus One Scenario. The one on one scenario pitted solo players from
opposing sides against each other. This scenario provided a baseline of performance to
compare against multiple aircraft scenarios. Target players were operated as drone and
then defensive aircraft to isolate target acquisition from combat maneuvering capabilities.
Detailed analysis of one versus one scenarios are treated by Hluck (Hluck, 1993).

5.2.2 Two Versus One Scenario. In the two versus one scenario, two players
were pitted against a single opposing aircraft. The object was to attack the opposing
aircraft and eliminate any threat. Team players were operated independently and then
cooperatively to gauge the effect of cooperative rules. Solo players were operated as
drone and then defensive aircraft as done in one versus one scenarios.

5.2.3 Two Versus Two Scenario. In the two versus two scenario, two players
were pitted against two opposing aircrafi. These tests offered a richer choice of
combinations. Two independent or cooperative players maneuvered against an opposing
team of two players. Target aircraft operated as drone players to clearly distinguish
cooperative behaviors in attacking aircraft.

5.2.4 Neutral Players. The PDPC simulator has the capability of recognizing
"neutral” players. Rules in place to defend against a hostile player also account for non-
hostile players. Players whose "side" slot indicate they belong to a neutral third side are
labeled benign threats and ignored. Neutral players were intended to build an escort

mission capability. Future tests should assess this capability.
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5.3 Performance Versus Drone Aircraft

5.3.1 Solo Player. Two players on opposing sides launch from opposite home
bases and meet on the playing grid. The "friendly" player uses a defense mission while the
enemy player follows the testing mission. Figure 5.3 depicts the trajectories followed by
each player. (1) The pilot departs from the friendly base in the lower left corner and
assumes position at the CAP station. (2) The drone, bogey1, launches from the "enemy"
base at the top right hand corner of the grid and begins a patrol route. (3) As the drone
approaches the friendly CAP station, the pilot continues patrolling. (4) At a distance of
500 units, the drone comes into radar range and is identified by the pilot as a threat. (5)
The pilot tightly circles the drone to achieve a rear quarter approach. (6) The pilot chases
the drone, achieves a rear quarter position and (7) launches a missile. (8) The missile
destroys the bogey and the pilot returns to the CAP station.

North-South Solo Versus Drone
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Figure 5.3. One Solo Player Versus a Drone.
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5.3.2 Two Independent Players. Two solo players execute defense rissions while
an “"enemy" drone enters "friendly" airspace. Team players “ct independently if their role

slots have a "solo" designation and leader and follower slots are "none.”

North-South Two Independents Versus One Drone
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Figure 5.4. Two Independent Players Versus a Drone.

As in the solo player scenario, (1) aircraft depart from their home base and proceed
to the CAP station. (2) Both "friendly" players detect the drone and turn tightly to
achieve a rear quarter position. (3) Both players catch the drone on the eastern end of the
grid, but only one fires a missile, the partner. The missile misses, and (4) both players
continue to chase the drone without success.

Although only two traces appear in Figure 5.4, "friendly" force players followed the
same path and fired the same rules to chase the bogey. Consequently, the pilot's trace and
partner's trace overlapped identically. Late in the chase (point S in Figure 5.4) aircraft

maneuvering parameters diverged sufficiently to produce separate traces for each player.
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Typically, team players without an explicit leader-follower relat.onship copied each other’s
movements revealing the dei. rministic mechanisms of PDPC algorithms.

5.3.3 Two Cooperative Players. Two cooperative players execute the defense
mission, but in this case "friendly" forces use cooperative rules. Figure 5.5 illustrates the
paths in this two-on-one scenario where the partner's trace has been highlighted to
distinguish "friendly" aircraft. 1.sing cooperative rules, pilot and partner occupy opposite
sides of the CAP-station (1a anu -b). (2) As the drone aircraft approaches from the west,
“friendly" aircraft execute the CAP station plan. (3) The partner first detects the bogey at
the point of turning south from the top of the CAP station loop. (4) The bogey continues
through tt AP station with the partner chasing. (5) The pilot responds when the bogey
nears the - end of ile ¢ AP station. "Friendl~" forces launch a total of three missiles
during the\ ~ . g hsse (5.7, 4 8). [l2ys to this experiment a.c that "friendly" forces

increased theu =ffective . -2~ u range and triplea the number of missiles fired at the target.

North-South Two Cooperative Versus One Drone
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Figure 5.5. Two Cooperating Players Versus a Drone.
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Cooperative players gained an advantage in effective search range by following rules
for CAP station patrols. A standard procedure for CAP station patrols is for team
members to occupy opposite sides of a CAP station loop (Shaw, 1985:327). The intent is
for at least one team member to face the expected direction of a threat. The designated
follower chose a different point of the CAP-station than the leader to simulate CAP-
station patrol behavior. In this simulation, players occupying a CAP station function as
solo aircraft. If the leader leaves to address a threat, followers return to a "follower" role.
Complementary rules redirecting a leader when a follower addresses a threat were not
fully functional which explains why the pilot did not respond to the partrer's behavior.

The partner, however, does respond to the leader's behavior. Figure 5.6 depicts a
modified two-versus-one scenario in which the leader first detects enemy aircraft. In this
scenario, two drone bogeys follow a direct path to the CAP station (1). The leader
detects both bogeys soon after reaching the CAP station (2) and begins a pursuit. (3)
When the pilot leaves the CAP station, the partner attempts to rejoin the flight, (4) The
pilot turns tightly into the rear quarter of both drones after a forward quarter pass. (5)
Once in a firing position, the pilot launches a missile (which destroys one of the drones)
and executes a "separation" maneuver taking him north of the second bogey. The partner
is still trying to rejoin the pilot. |

At point (6), the pilot is out of position for a shot attempt on the second drone as a
result of the separation maneuver, but the partner is in position. (7) Before the partner
can acquire the second drone, the pilot regains a rear quarter position and resumes the
attack. (8) The partner defers to the pilot and again tries to approach the pilot from the
rear quarter to assume a formation position. (9) The pilot pursues the second bogey while
the partner chases the pilot. (10) A second missile launch misses the second drone, but
(11) a third missile destrovs the target. (12) Both "friendly" players return to the CAP

station to resume patrol.
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Figure 5.6. Two Cooperating Players Versus Two Drones.

This test illustrated how cooperating players use strategy when addressing threats. In
the two-versus-one demonstration, both pilot and partner fired missiles at the bogey
indicating they behaved as solo fighters. In the two-versus-two demonstration, the partner
did not fire on the bogey, instead deferring to the pilot's leadership role. Pilot and partner
enacted the fighting-wing strategy which stipulates that a wingman should cover his leader

rather than engage the bogey (Shaw, 1985:198).

5.4 Performance Versus Defensive Solo Aircraft

5.4.1 Solo Player. In this test, two players have a defense mission and use the full
battery of maneuver, decision, and engagement rules. Figure 5.7 depicts the engagement
as players meet near the border. (1) The pilot enters from the south and turns west as the

bogey moves east, so the combatants approach each other head-on with lateral separation.




(2) The pilot turns sharply to the north in a lag pursuit maneuver. (3) Bogey1 continues
east to turns toward the south. (4) The pilot successfully continues lag pursuit through
the bogey's turn. (5) Each player uses vertical maneuvers attempting to achieve a rear
quarter position. (6) Players continue vertical maneuvers and drift toward the south.

Neither player gains sufficient advantage to fire a missile.
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Figure 5.7. One Versus One - Fully Functional Players.

The one-versus-one engagement using fully functional adversaries illustrates the
complexity of engagements when drones are not used. Hluck prevides detailed analysis of
solo player capabilities and one versus one engagements (Hluck, 1993).

The scenario in Figure 5.7 also highlights deficiencies in the PDPC flight model. The
bogey's erratic behavior occured during vertical maneuvers because roll, pitch, and yaw
are inter-related within flight model calculations. Heading is calculated as the angle
between the velocity vector and the positive x-axis. Roll angle is calculated as the angle

between the wing vector and the xy-plane. As an aircraft passes through a climb angle of
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90 degrees, heading shifts by 180 degrees and roll angle passes through zero degrees even
f the aircraft was trying to maintain constant heading and roll angles. The result is erratic
behavior displayed by any player operating near climb angles of 90 or -90 degrees.

5.4.2 Two Independent Players. Figure 5.8 depicts a scenario of two independent
players versus a single opponent. In this test, "friendly" forces use a pair of fully
functional players that have solo, or independent, roles. The "enemy" force is composed
of a single fully functional player in a defensive role. (1) Bogey! launches from the north-
east corner while pilot aad partner launch from the south-west. As in the demonstration
of two independent pluyers versus one drone, the pilot's track masks the partner's since
both follow identical rules. (2) The engagement begins much like the one-on-one scenario
with opposing sides facing each other near the center of the grid. Bogey1 abandons

maneuvering, however, in an attempt to evade superior numbers. (3) The ensuing chase

i{lgrth—South Two Independents Versus One Solo
00 T LS v
“pilot"* —
"partner* ===
"ho ) L ——
800 | /jfﬁ',_,—-—-'
1
____,.--"""’
600 :
480 .
200 .
0 1 L 1 P
0 200 400 §00 800 1000

West-Fast

Figure 5.8. Two Versus One - Fully Functional Players.
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proceeds west without conclusion. The two-versus-one with fully fuuctional players
restates the problem of independent players: identical actions and reactions.

5.4.3 Two Cooperative Players. In this test, "friendly" forces use cooperative
rules against a single "enemy" defender. Figures 5.9 through 5.11 depict the encounter
through time steps 230, 500 and 750, respectively. At first, all three players assume a
defensive posture at a CAP station. The pilot and partner go to opposite sides of the
"friendly" CAP station in the south (a2 and b2) while bogey1 proceeds to the "enemy"”
CAP station in the north (c2). Just before time st;ap t = 250 the pilot detects bogey1 and
signals the partner to rejoin in a formation. The partner acknowledges and moves toward
the pilot. The positions of pilot, partner and bogey1 at time r=250 are shown in Figures
5.9 and 5.10 as a3, b3, and c3, respectively.

The behaviors of "friendly" players were different than in either the one-on-one or

two independent player scenario. Pilot and partner traces did not overlap because the
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Figure 5.9. Two Cooperative Players Versus One Defensive Player (t=250).
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partner employed rules explicitly designed for follower actions. When the pilot decides to
engage the bogey, the partner returns to formation flight rather than attack the bogey
directly. The pilot and bogey did not immediately engage, but this was due to code
refinements that did not affect leader-follower relationships.

Figure 5.10 illustrates mid-game maneuvering. The bogey has not responded yet
because the pilot is not considered a threat (c4). The pilot, however, considers the bogey
to be a threat and moves north to intercept (a4). As the pilot reaches the border, the
bogey threat level is reassessed and reduced since the bogey is retreating north (c5). This
leads the pilot to a return to CAP station duties (a5S). Pilot and partner (bS) both return to
CAP station duties until the pilot again comes within range of bogey| (a6 and c6). At
time =500 the pilot and bogey engage (a7,c7) in a nose-to-nose turn. As bogey1 turns

west, the partner crosses his path (E8 and c8) attempting to rejoin the pilot (a8).
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Figure 5.10. Two Cooperative Players Versus One Defensive Player (t=500).
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The mid-game illustrates how cooperative rules indirectly affect players. Shortly
after the pilot and bogey executed a nose-to-nose turn, the bogey detectec the partner
crossing his path. Instead of continuing a turn into the pilot, bogey1 turned into the rear
quaster of the partner interrupting his primary engagement with the pilot. The bogeys
behavior changed because the partner out of position. If the pilot and partner were
defined as independent players, the partner would have followed the pilot's track
identically and the bogey would not have been interrupted.

Figure 5.11 depicts the end-game. Bogey! turns south (c8) and approaches the pilot,
who is proceeding south toward the bogey. Pilot and bogey pass (a9 and ¢9) and the pilot
pursues (al0). The partner turns in the east (b9) attempting to rejoin the pilot. Partner
and pilot pass each other (a10 and b10) as the pilot proceeds north to engage the bogey.
The bogey turned south (c10) to meet the pilot. The pilot and bogey engage using vertical

maneuvers (all, c11) and the simulation ends with no player gaining an advantage.
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Figure 5.11. Two Cooperative Players Versus One Defensive Player (t=500).
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5.5 Cooperative Maneuvering

Cooperative maneuvers require that two players have knowledge of each other and some
mechanism exists to coordinate actions. Figure 5.12 depicts one cooperative maneuver
within PDPC: an offensive split turn. Shaw describes an "offensive split", or "bracket", as
an attempt by two team playexs to surround a target (Shaw, 1986:204). I called this

maneuver a "split-turn".
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Figure 5.12. Offensive Split-Turn Maneuver.

5.5.1 Offensive Split Turn Maneuver. In figure 5.12, two "friendly" players
enter from the east as a single "enemy" drone approaches from the west. The partner
moves in formation with the pilot until the team reaches a point ten closing-velocity units

in front of bogey1 (the drone) where the pilot calls for a "split-turn" maneuver. The pilot
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executes a "separation-pursuit” maneuver generating a northward turn (ﬁluck, 1993).

The partner executes a "split-turn" maneuver which uses identical code, but negated
parameters to generate a way point on the opposite side of the target . The partner
follows a southward turn. As bogey1 passes, both "friendly" players execute lead, lag, and
pure pursuit maneuvers to achieve a rear quarter position and acquire the target. The pilot
acquires bogey1 first and launches a missile that destroys the target. The partner also
launches a missile because bogey]1 still exists when the partner fires. When the target is
destroyed, it is deleted from the simulation. The partner's missile loses track of the target
and flies to the east.

5.5.2 Coordinated Team Players. This serves to illustrate the problems in
coordinating team players. Separate rules must be in place for leaders and followers.
l?epending on strategy selection, followers typically remain in Chase phase while the
leader engages a target. To execute a cooperative maneuver, followers must first be
prompted by the leader. Rules communicating this prompt can use either object slot data
or factlist messages. Once prompted, followers need rules that are distinct from the leader

or identical behaviors will result.

5.6 System Performance

Overall system performance depended on the number and phase of players in a simulation
scenario. The greater the number of players and the more complex a phase module, the
longer PDPC took to process. Preliminary timing analyses show promise that PDPC
could be converted to a "real-time" base. The following two sections analyze preliminary
timing data collected during simulation runs. Simulations that generated the timing data

were run on a Sparcstation 2 which was part of an AFIT computer network.
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5.6.1 Two Versus One Timing Analysis. Timing data for a two versus one

scenario is shown in Figure 5.13. The "real-time" increment for each simulation time step
varieC as simulations progressed. During the simulation depicted in Figure 5.13, a single

drone remains in Cruise or Search phase throughout the test. Two players, the pilot and

partner, progress through different phases in an effort to destroy the drone.

Time (sec) TIMING ANALYSIS
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Figure 5.13. Two Versus One Timing Analysis.

When the drone comes within range, the pilot and partner increase processing time

demands on the system. The point of highest demand occurs when both the pilot and

partner enter the Engage phase to execute a "split-turn." Each execution of a "split-turn”

increment required approximately 2.1 seconds. A second peak occurs when the pilot

launches a missile. This action introduces a fourth player into the simulation (the missile)
causing processing time demand to increase. Demand reduces significantly when the

missile hits the target because two players are deleted from the simulation and the pilot
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and partner return to the Cruise phase. With only two players in the simulation operating
in the same phase module, time demand remains less than one second per iteration.

5.6.2 Two Versus Two Timing Analysis. An analysis of a two versus two
scenario is depicted in Figure 5.14. In this scenario two teams of cooperating players
engage each other. Preliminary analysis indicates all phases have a higher average time per

iteration, but the amount required in any phase remained less than five seconds.
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Figure 5.14. Two Versus Two Timing Analysis.

5.7 Summary

The PDPC simulated various air combat scenarios including one-versus-one, two-versus-
one, and two-versus-two. Players used planned routes to move through simulated

airspace unless they encountered opposing players. Engaged players used the rules in
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phase and decision modules to decide on a course of action. The same rules were used for
both independent and cooperative team players. Cooperative players gained advantages
over independent players in search and maneuvering capabilities. Overall system

performance depended on the number of players employed and modules accessed.
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6. Conclusions and Recommendations

Cooperative behaviors in autonomous agents of an air combat simulation can be
implemented using universal reactive plans in a modularized knowledge-base system. The
intent of this thesis was to investigate, develop, and implement cooperative behaviors in
autonomous air combat agents for operation within the ARPA Distributed Interactive
Simulation program. The PDPC implements pilot decision-making processes and behavior

patterns, including cooperative behaviors, in an air combat simulation.

6.1 Conclusions

6.1.1 Cooperative Behaviors PDPC agents demonstrated cooperative behaviors in

terms of leader/follower role switching, cooperative maneuvering, and coordinated action.

6.1.1.1 Role Switching. The PDPC implemented rules that resulted in role
switching between leader and follower. Depending on strategy, followers chased the
leader or assumed the lead role during engagements. If the current strategy was "fighting-
wing", followers retained a follower role and wueferred to the leader during engagements.
Followers assumed a lead role if the current strategy was not "fighting-wing" and the
follower had a greater position advantage on a target. On a role switch, leaders assumed a
follower role until the position advantage reversed. Role switching improved team
performance by increasing the number of shot opportunities presented to players.

6.1.1.2 Cooperative Maneuvering. Cooperative players maneuvered in
concert during engagements. The “split-turn” maneuver required coordination between

players attempting to surround a target. Pre-conditions on executing the "split-turn"




required that the leader ensure the follower was in position before beginning the
maneuver. Once initiated, leader and follower used complementary rules to achieve a
rear-quarter position advantage. Cooperative maneuvering also resulted in improved team
performance since both leader and follower engage a target.

6.1.1.3 Coordinated Actions. Coordination between players required either
knowledge of teammate object data or use of explicit messages. Followers used the status
of a leader's phase to key some actions. For example, when a leader destroyed a target
and returned to Cruise phase, the follower detected the phase change and responded by
also returning to Cruise phase. Leaders prompted followers to key other actions. A
leader on CAP station assignment detected an incoming threat and used an explicit
message to instruct the follower to reform for an attack.

In phase control modules, special rules coordinated leaders and followers. The
primary task of a follower was to follow the leader. Followers executed rules designed to
achieve a flight formation on the leader rather than fly to the leader's goal. Scenarios
involving two solo players on the same team resulted in overlapping flight paths because
players used the same goals over identical rule firing sequences. Teams using a
leader/follower relationship produced separate tracks because players neither had the same
goals nor fired the same rules.

In the decision modules, rule design allowed activation by either a leader or follower.
For example, followers who detected new threats performed threat analysis and shared
data with their leaders. Followers also committed to threats, planned intercepts, and
reacted to missile warnings regardless of team role. Coordination rules allowed leaders
and followers to act independently while maintaining a leader/follower relationship.

6.1.2 Air Combat Simulation The PDPC enacted air combat simulations sufficient
for research purposes. Agents demonstrated enhanced realism in maneuvering, strategy

and tactics, and pilot decision-making.
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6.1.2.1 Realism in Air Combat Maneuvering. Simulation results depicted
air combat maneuvering sufficient for research of computer generated forces. Adversary
piayers recognized and confronted each other when they came within range and were
assessed as a threat. Team players cooperated on a leader/follower basis and
demonstrated improved performance both over single player threats and independent
threats. Firing distinct rule sequences for leaders and followers added realism to combat
simulations.

PDPC players executed a variety of maneuvers, including both and cooperative
maneuvers. A predecessor of PDPC, MAXIM, used universal reactive plans to implement
intelligent adversaries in an air combat simulation. MAXIM agents employed maximum
turn-rate maneuvering tactics which resulted in abrupt course changes rather than smooth
cnrves (Dyer and Gunsch, 1993). PDPC maneuvers operated at variable turn-rates
resulting smooth curve trajectcries rather than abrupt turns.

6.1.2.2 Air Combat Tactics and Strategy. The PDPC implements strategies
and tactics discussed by Shaw in his book Fighter Combat, Tactics and Maneuvering
(Shaw, 1985). Individual players adopted an "energy" or "angles" fighter strategy
depending on relative energies between aircraft. Team players determined a strategic
approach and executed two player team strategies such as “fighting wing" and "loose
deuce.” MAXIM agents followed a "shoot first" philosophy and so di not allow a
choice of strategies or tactics beyond search, attack, and evade (Dyer and Gunsch, 1993).
PDPC implements a comprehensive range of strategies, tactics, and maneuvers to enhance
realism in air combat simulations.

6.1.2.5 Combat Pilot Decision-Making. Rules were based on parameters
and metrics outlined in the Titan report (Titan, 1986). Each of 40 parameters were
implemented as either an object slot or function call. Function-based parameters derived a

given parameter from data contained in object slots. Rules used both slot data and
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function-derived information to determine appropriate actions. The result is a set of six
rule modules that provide a second level of reasoning for PDPC agents.

6.1.3 Rule Modules as Reactive Plans. Rule modules act as reactive plans for
each agent in PDPC. Since the basic CLIPS rule follows a predicate-consequent
construction, individual rules enact a stimulus-response behavior. Rules could act singly,
such as with a phase change, or in concert, such as with maneuver selection. Since rules
fire once on each iteration, PDPC implements the basic approach of a reactive system
(Rich and Knight, 1991:331). Rule modules provide a reactive plan of action for each
nhase of a mission.

6.1.4 Modularized Knowledge-Based System The PDPC captures the knowledge
and experience of air combat pilots in a modular knowledge-based architecture.
Knowledge is contained in rules which execute actions dependent on specific pre-
conditions. The PDPC architecture compartmertalized rules into modules based on the

stages of an air combat mission and the levels of a pilot decision-making model.

6.2 Recommendations

6.2.1 PDPC as a Research Tool. The PDPC simulator should be used to further
investigate cooperative behaviors in autonomous agents. PDPC required extensive
knowledge engineering, design, and implementation. The result is an air combat
simulation environment offering several advantages. First, PDPC offers an extensive
knowledge base defining maneuvers, tactics, and strategies for agents in an air combat
simulation. Second, agents function autonomously, so experiments could be designed to
depict complex air combat scenarios. Third, all code was written in CLIPS to take
advantage of rapid prototyping, portability, and development environment features.

PDPC could prove valuable to research in the field of air combat simulation.
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6.2.2 Input and Output. Considering the most reliable output to date is Gnuplot
files, output systems are inadequate for development of an interactive "real-time" system.
PDPC generates location, timing, log, and "Red Flag" data files. Location dawa depicts
the x, y, z, coordinates of each agent during a simulation run. Timing data depicts the
time per iteration of simulation runs. Location and timing data files were used to generate
figures for this thesis. Log files collect output from format statements embedded in PDPC
nules. A log file contains a chronological history of rule firings during simulation runs.
"Red-Flag" data files contain data suitable for broadcast over the AFIT Batti2Sim
simulator to a "Red Flag Terrain Map" simulator. PDPC output formats are suitable for
research purposes and could support development of an interactive interface.

6.2.3 CLIPS Pitfalls. One coding pitfall was in how CLIPS handled global
variables on the left-hand side of rules. All global variables were initially defined in the
" Main module to ensure each rule used common values. For example, maximum radar
range was defined globally to ensure all rules that checked target distance only considered
objects within maximum radar range. When phase or decision modules imported global
variables, they were not visible to CLIPS when used on the left-hand side of a rule. The
solution was to redefine global variables within each module when they were needed on
the left-hand side of a rule.

6.2.4 Flight Model Deficiencies. The algorithms used to generate agent motion
did not provide suficient control for formation flight. Movement control was based on
reorienting a player's nose vector before each move rather than on reorienting a lift vector.
Redefining motion in terms of lift vectors could produce more realistic flight trajectories.

6.2.5 Strategy Limitations. The PDPC limits players to acquiring a target and
launching a missile from a rear quarter approach. Forward and beam quarter attacks could
be coded, but heuristics measuring the value of each approach would need to be

developed. This aspeci of PDPC should be developed in future c¢fforts.

6-5




6.3 Future Work

6.3.1 Distributed Interactive Simulztion Interface. Before connecting PDPC to
DIS, an interactive network interface must be developed and installed. The PDPC
described in this thesis can generate locatioa data files, but can neither generate nor
receive DIS protocol packets. An interface module could be developed to process
network functions. The module would need packet receivers and translators to position
DIS participants within the CLIPS environment. It would also need packet builders and
transmitters to put player inforimation onto tiie network.

6.3.2 Prioritized Parameters. A scheme tc prioritize data parameters with respect
to each other should be implemented. The Titan report rank ordered data parameters
according to results of a survey of combat fighter pilots (Titan, 1986:79). For example,
on average, Air Force pilots felt that the type and identification (friend or foe) of aircraft
were the most important parameters to know about a target. Rate of climb was the least
important. In PDPC, all of the parameters are available as object slot data, but none are
weighted with respect to each other. A scheme to prioritize data parameters was left for
future research.

6.3.3 Maneuver Modules. Phase control modules contained Juplicate, or near
duplicate code to gencrate maneuvers. As a consequence of rapid prototyping, many rules
contained identical predicate and consequent code sequences. Rule modules contained
sets of nearly identical rules. A potential method of improving system performance would
identify common characteristics of rules and rule moduies and extract those characteristics
to a separate rule module. For example, lead, lag, and pure pursuit rules were built into
six phase control modules. These rules could be removed from phase modules and
replaccd by a separate "maneuver" module containing three rules: one for lead, lag, and

pure pursuit. A rule to focus onto the maneuver module would replace the lead, lag, and
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pure pursuit rules in each phase module. The overall rule count would reduce by nine
rules. Similar efficiency questions are contained in each rule module. A. thorough study
could result in significant system performance improvements.

6.3.4 Generative Planning. An alternative form of planning could improve agent
effectiveness within simulation runs. The PDPC currently contains a rudimentary irtercept
trajectory planner, but does not provide means to integrate overall mission goals or assign
target valuc. A high level generative planner could replace the "target-data” sub-module
(see Figure 4.32) and provide a more effective means of updating threat assessments and
target values.

6.3.5 QOffensive Missions. To enhance simulation realism, the oifensive mission
should be fully developed. The offensive mission would use a route plan similar to a
patroi route plan, but pilots should consider targets of opportunity, terrain masking, and
the value of retreating versus attacking.

6.3.6 Networked Simulations. A step toward developing a fully interactive DIS
interface would be to network PDPC simulations running on separate machines. A
network interface would need to be developed. As an initial effort, a simpje interface
would use the CLIPS "save-instance” and "restore-instance” functions to write object data
to a common data structure. An advanced network interface would need to manage many
sources.

6.3.7 "Fogging" Perfect Data. Another improvement to realism would prevent
agents in the simulation from using perfect data. Players in PDPC do not change phase,
select a maneuver, or fire a missile unless the predicate portion of rules are satisfied
exactly. Data used to test each predicate comes from object slot data; perfect data. For
example, a PDPC agent measures target distance by taking the difference between twe x,
y, z coordinate points. The result is a measurement precise to several decimal places.

"Fogging" the data would reduce the precision, but enhance the realism.
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6.4 Summary

The PDPC simulator demonstrates a means of eliciting cooperative behaviors from
autonomous agents in an air combat simulation. The resulting system offers an
environment to explore agent interaction across complex air combat scenarios. Potential
performance improvements could result from code "turing" and rule extraction. Realism
could be enhanced with the addition of offensive mission modules and a means of
"fogging" the data. As a research tool, PDPC could serve as a basis for future work on

interactive, networkud air combat simulations.
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Appendix A. Vector Mathematics for Air Combat Maneuvering

A.l. Introduction.

This appendix reviews basic mathematical concepts for analyzing vectors and then defines
vector spaces used in air combat maneuvering. My source is Calculus and Analytic
Geometry by Mizrahi and Sullivan (Wadsworth, Inc. 1982). My intent is to introduce

some key terms and definitions we used to develop our simulatoi.

A.2. Vector Math.

To implement computer generated forces in a multi-dunensional simulation, we need a

firm grounding in basic vector mathematics.

A.2.1. Vectors and Vector Space. Vector space is a rectangular coordinate system
based on any three vectors: X, y, and z. Vectors are defined on these axes and any vector

will have the form:

V=ax+by+cz (A1)

where V is the three space vector, a. b, and ¢ are constants, and X, y and z are unit vectors
along each of three coordinate axes. Since our simulator contains several vector spaces,
we adopted a shorter notation for vectors: V =(a, b, ¢) . Unit vectors are implied and

depend on the definition of the vector space.




........... (a, b, o

Figure A.1. Vectors in Vector Space.

A.2.2. Vector Magnitude. Vector magnitude is defined as:
Vl=vVa® +b* +c* (A2)

where V, a, b, and c are as defined above.
A.2.3. Direction Cosines. Direction cosines indicate the oblique angles between a
vector and each of the three coordinate axes.

a
CosOL === COS

b c
B=— cosy=-— (A.3)
VI vl O\

where V, a, b, and c are as defined above and @ , 3 ,andy are angles off the x, y and z
axes, respectively.
A.2.4. Dot Product. The dot or scalar product is:

VeW=qaa,+bb,+cc, (A4)

where V =(a,, b;, ¢;) and W =(a,, b,, c,) .
A.2.5. Angle Between Vectors. The angle between two vectors is:

VoW
IvI-Iwi

cosf = (A.5)
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where V and W are as defined above and 0 is the angle between them.

A.2.6. Vector Projection. The projection of one vector along a second is then:

VeW
[Vlicos = ==~ (A6)
Wi
where all symbols are as previously defined.
A.2.7. Cross Product. The cross product between two vectors is:
VXW = (b, ~b,c,)x+(a,c, - a,c,)y +(ab, —a,b)z (A7)

All symbols are as previously defined. Some useful properties of the cross product are:

VxV=0 Ux(V+W)=(UxV)+(UxW)
n(VXW)=nVxW  |[VxW|[} =V} [W[* - (Ve W) (A.8)
VXW=-WxV [V x W] = ||V [W]siz 6

The rule of "thumb" applied to the cross product is the Right Hand Rule. T xtend the
fingers of your right hand along the vector V. Curl your fingers the shortest angular
distance to the vector W. Your thumb will extend in the direction of the cross product.
A.2.8. Triple Product. Two vector triple product rules are:
Ues(VXW)=(UxV)eW (A.9)
and

UX(VXW)=(UsW)V—(Us V)W (A.10)

Equation A.9 returns the magnitude of one vector projected onto the cross product of two
other vectors. The triple cross product (A.10) we found useful in calculating parameters
relative to two moving objects.

A.2.9. Normal of a Plane. The normal of a flat plane is a vector of unit length
which is orthogonal to a plane. For example, the z axis in Figure A.1 is orthogonal to the

xy-plane. If z was of unit length, it would be "normal” to the plane. The normal, N, of
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any plane in which two vectors, V and W, lie is given by the cross product divided by the

magnitude of the cross product:

_(VxW) (A.11)
[VxW|

where N, V, and W are all vectors.
A.2.10. Equation of a Plane. The equation of a flat plane defined by two vectors:
(V-W)eN=0 (A.12)
where N is the normal as defincd by Equation A.11.
A.2.11. Angle Between Planes. The angle between two flat planes is defined by

their normals:

INl"NzI

(A.13)
€080 = p———= 0<0<®
N[N Z

where 0 is the angle between normals.

A.2.12. Distance Between a Point and a Plane. The shortest distance between a
flat plane defined by ax+ by +cz=d and a point not lying in that plane defined by
Py=(x;, 1, 2y) is:

|ax, +by, +cz, —dl (A.14)
va?+b*+c?

dist =

where dist is the distance from the point to the plane.

A.3. Air Flight Vector Spaces.

Several sets of axes interact with each other during air combat maneuvering. Airspace is

defined on the points of a compass. Airframes, or fuselages, have a nose, tail, and wings.

The attitude of an aircraft, roll, pitch, and yaw, also have three-space sets of axes. The
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following paragraphs clarify define relationships between coordinates and coordinate
frames used in our simulation.

A.3.1. Airspace Axes. The airspace in which simulations occur can be defined in
several ways. First, there is latitude, longitude, and altitude in units of degrees (north or
south), degrees (east or west), and either feet or meters, respectively. This form most
directly represents the earth coordinate system. Second, there is simply north, east, and
up, with the distinctions of south and west arbitrarily dismissed. This second form also
has units of degrees, degrees, and feet. The directions of south and west are defined as
negative north and negative east, respectively. Lastly, there is a rectangular coordinate
frame arbitrarily defined as a right-handed coordinate frame with all axes in a common unit
of measure. This coordinate frame defines the location of a platform in three-space
without the need to calculate distance from degree measurements.

We used the rectangular coordinate representation since units are common to all axes
and switching between units of measure only requires a simple conversion utility. To
relate back to a world coordinate system, we arbitrarily defined east as the x-axis, north as
the y-axis, and altitude as the z-axis. The set of coordinate axes defining a coordinate grid
system is sometimes called an earth grid coordinate (EGC) frame.

— - (a b, c)
zZ A —— ’y

Altitude {

(0,0,

East
Figure A.2. Earth Grid Coordinate Frame.
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A.3.2, Aircraft Axes. Each airframe can be defined using threc orthogonal axes:
nose, wing, and apex. The nose axis, also known as the "gun bore line" extends coaxially
with the aircraft fuselage. The wing axis extends outward along the left wing,
perpendicular to the fuselage. The apex axis extends upward, along the rudder and

Apex Axis perpendicular to both nose and wing

Nose Axis

axes. These axes remain fixed in relation
to the airframe regardless of airframe
attitude. The set of coordinate axes

defining an airframe is called the aircraft

Wing Axis body coordinate frame. Iused the

abbreviation ABC frame to refer to this
Figure A.3. Aircraft Body Coordinate Axes.

coordinate system.

A.3.3. Attitude Axes. The pilot controls roll, pitch, and yaw of the aircraft. In
level flight, roll is the angle between apex and z vectors. In oblique flight, rol! is the radial
angle between the nose-apex plane and nose-z plane. Pitch is the angle between the nose
vector and the horizontal x-y plane. Yaw, also called side-slip, is the angle between the
nose vector and direction of travel when in level flight. In oblique turns, vaw is the angle
between the nose-apex plane and velocity-apex plane. Another attitude parameter is
called angle of attack, or AOA. The AOA is the angle between the nose-wing plane and

the velocity-wing plane.

Figure A.4. Roll Attitude Parameter.




Velocity A
YAW

Velocity

Up - \PITCH

~

Down 4 \L xy-plane

Figure A.5. Pitch and Angle of Attack Attitude
Parameters.

Figure A.6. Yaw Attitude
Parameter.

A.3.4. Orientation Space. We distinguish aircraft orientation and aircraft attitude
using different reference frames. Aircraft attitude is with reference to the pilot in the
cockpit. Aircraft orientation is with reference to an observer on the ground. The
distincticn is necessary since combinations of roll, pitch and yaw produce different effects.
For example, increasing pitch on an aircraft in level flight will increase altitude, but
increasing pitch on an aircraft in inverted flight will decrease altitude. As a more complex
example, consider how changes in yaw affect an aircraft in 90 degrees of roll. To a pilot,
yaw still has the effect of moving atiude | -
the aircraft left or right. To an

earth-bound observer, the aircraft

would climb or dive. As a more

succinct example, consider 180

degrees of yaw. Is the aircraft

flying backwards, or westwards?

Figure A.7. Orientation Parameters.
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To separate pilot and ground reference, we defined an orientation vector composed
of a bank angle, climb angle, and heading angle. The three angles are analogous to roll,

pitch, and yaw, but serve to distinguish the pilot reference from the ground reference.

A.3.5. Velocity Space. Important parameters in velocity space include the velocity
vector, speed, direction and heading. The velocity vector is the magnitude and direction
the aircraft is moving. Speed and direction are derived from velocity. Heading is the
projection of the velocity vector into the horizontal x-y plane. Relative velocity

parameters are discussed in the section entitled Air Combat Vector Spaces. To simplify

-some calculations, we defined the nose and velocity vectors to be identical.

A.3.6. Acceleration Space. Acceleration parameters affect changes in the velocity
vector. linportant parameters include thrust, lift, and radial-g. Thrust is the force
produced by the engine to propel the aircraft forward along a heading. Forward thrust
changes the speed component of the velocity vector. Lateral thrust causes drift. Vertical
thrust changes the altitude. Lift depends on wing surface area and engine thrust. To
maintain level flight, lift must at least counteract the effects of gravity. In a loop, the lift

vector rotates through 360 degrees, so lift and gravity do not always oppose each other.

Radial-G

Figure A.8. Veloci’; and Acceleration Parameters.
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Radial-G is the amount of force used to turn the aircraft left or right in the horizontal x-y

plane. Acceleration is the vector sum of thrust, lift, gravity and radial-g.

A4. Air Cembat Vector Spaces.

Air combat is conducted between aircraft. Aircraft have z relation to the surrounding
airspace in terms of hemispheres and quarter spheres. Opponents must orient airframes to
claim the best advantage. Failing that, pilots must not concede the worst disadvantage.
A.4.1. Approach Hemispheres. Combat pilots refer to aircraft in slang terms.
Aircraft not only have noses and tails, but left and right beams, and hot and cold sides.
The nose is the front of the aircraft while the tail is the back. The beam is off to one side,

either left or right. The hot side is the top while the cold side is the bottom of the aircraft.

Hot Side

Left Beam
Nose Axis

Apex Axis

Tall Axis

Cold Side

Figure A.9. Approach Hemispheres.

Six hemispheres define the surrounding airspace. The forward hemisphere is
centered on the nose vector and extends spherically for 90 degrees off the nose vector.

The rear hemisphere is similar, but is centered on ihe tail vector. Four other hemispheres,
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lefi-side, right-side, hot-side, and cold-side, are centered on the left-beam, right-beam,
apex, and negative apex, respectively.

A.4.2. Approach Quarter-Spheres. Six quarter-spheres also define the
surrounding airspace, but provide more accuracy for targeting. The forward quarter is
actually a cone projected along the nose vector. The nose vector runs down the center of
the cone. The sides of the cone make an angle of 45 degrees with the nose vector.
Similarly, the rear quarter is centered on the tail vector and beam quarters are centered on
beam vectors. For completeness, I've defined an overhead quarter centered on the apex

axis and an underside quarter centered on the negative apex axis.

-~ - -
-
Forward
Hemisphere -
/ " Forward
/ SQuarter
/ /
[ o
| .
\ \ \
' e Wing . Rear
N\ Left e Quarter y
" Beam . __ . _ H Bea;'1 .
N ,Quarter T ~— . _ . _ . g — =~ emisphere
‘\ \ . ’ Rl /
3“—” ~
3 . ~ - - _ _ P

Figure A.10. Approach Quarter-Spheres.

The airspace can also be defined in terms of quadrants. Eight quadrants correspond
to the quadrants in rectangular coordinate frames. Quadrants are defined in Appendix B
and finer cones are defined under the section entitled Targeting Parameters later in this

appendix.
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A.4.3. Maneuvering Parameters. Important parameters in maneuvering space
include distance, angular and rate measurements. Perhaps the most critical measure is the
line of sight (LOS) between two aircraft. The LOS is the vector difference between two
points in three-space. Most maneuvering parameters refer to the LOS either directly or
indirectly.

Three distance measurements help calculate maneuvering parameters. Range is the
two dimensional distance between aircraft locations as measured in the horizontal xy-
plane. The magnitude of the LOS indicates three dimensional distance. Separation is the
lateral ranze between aircraft.

Angular measures include lead (or lag) angle, angle off the nose (AON), angle off the
tail (AOT), target aspect angle (TAA), and track crossing angle (TCA). Lead (or lag)
angle is the angular difference between the velocity vector and LOS. The AON is the
angle between the LOS and the target's nose vector. The AOT is the angle between the
LOS and the target's tail vector. The TAA is the smaller of AON and AOT, so target
aspect angle has a range of 0 to 90 degrees. The TCA is the angle between velocity
vectors.

Rate parameters include closing velocity, crossing velocity, and LOS rate. Closing
velocity indicates whether the distance between aircraft is increasing or decreasing. It is
calculated as the vector difference between velocity vectors. Crossing velocity indicates
how fast a target moves across an aircraft's path. It is calculated as the closing velocity
times the sine of the lead angle. The LOS rate is the rate of change in LOS and is

estimated by the crossing velocity.
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Figure A.11. Maneuvering Parameters.

Separation

A.4.4, Targeting Parameters. Two firing envelopes describe targeting: guns and
missile envelopes. The guns envelope contains two effective firing areas. The tracking
area allows the attacker to hold the target within its gunsights for an extended period of
time. The snapshot area gives the attac® - brief glimpse of the target within its gunsight.

Minimum and maximum ranges depena . relative velocity and maneuvering.

A-12




MAX RANGE

SNAPSHOT

SNAPSHOT
AREA

Figure A.12. Targeting Parameters. (Reconstructed fr;>m Shaw1985:24)

The missile envelope contains areas of high and low kill probability as well as areas
where only "look-up" shots are effective. A high kill probability means the missile is likely
to find the target. A low kill probability means a missile is likely to pass the target and
detonate on the far side. A look-up shot reduces ground clutter so missiles do not lose
track of the target.

Under maneuvering, missile envelopes change dramatically. If closing speed is high,
then both maximum and minimum firing ranges increase. This means a missile can be fired
early. If closing speed is low (or negative), then maximum and minimum ranges decrease
and missile firing should wait. If crossing speed is high, then the missile field of view
shifts to compensate. Under a lead angle with high crossing speed, missile field of view
shifts toward the target. But with a lag angle, missile field of view shifts away from the

target.
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Figure A.13. Targeting Parameters. (Reconstructed from Shaw, 1985:47)

A.S. Summary.

Basic mathematics concepts are presented here in an attempt to understand aerial combat
maneuvering and introduce key terms. These terms define basic parameters and provide
the beginning of a data dictionary for our simulator. Apperdix B contains a detailed

parameter set and data dictionary.
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Appendix B. Key Parameters and
Data Dictior.ary

B.1. Introduction

This appendix is a dictionary of key parameters measured, monitored, or otherwise
used during air combat maneuvering. Most of the parameters listed here are taken from
the book, Fighter Combat, Tactics and Mar.euvering (Shaw, 1985). Parameters were

implemented in the PDPC as indicated in the "defined as" column in each table.

B.2. Background.

In air combat maneuvering there are several different kinds of parameters. Low-level
detail parameters include aizcraft specifications, such as maximum speed and altitude.
These low-level parameters can be static or dynamic. By static I mean the value of the
parameter should not change during the life of the platform. By dynamic, I mean the pilot
controls a parameter's value within a specific range. Some parameters can be associated
with others. These associations are pointed out where necessary. This appendix

distinguishes parameters and their types.

B.3. Organization.

This appendix lists and describes parameters that were used in implementing the
PDPC air cosnbat simulator. Parameters are not all inclusive since the intent was not to

research air combat maneuvering, but to reveal methods for cooperative decision-making
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in autonomous agents. These parameters provide insight into decision-making processes
undertaken by pilots during air combat.

Key parameters that were implemented are explained in the "defined as" column.
Parameters may be defined as one of several types. A global constant indicates the
parameter is visible from any phase, module, or function. A local constant is only visible
within a specific module. A class slot means the parameter is held in a slot of an object
definition. A fact slot means the parameter appears as a field in a fact or template. This
aiso typically means the information is hard coded in one or more rules. The phrase "not
defined" means the parameter was not implemented in the PDPC simulation, but

parameters that were not implemented are listed for completeness.

B.4. Key Parameter Tables.

B.4.1. Static Parameters. Static parameters are very-low-level details that either
do not change or do not change significantly to affect decision making. These parameters
indicate maximums or minimums for given platforms. For example, the type of aircraft
remains the same regardiess of its condition. Other parameters, such as maximum turning
radius, were assumed constant for the purpose of decision-making.

Aircraft performance parameters describe limitations of aircraft performance. For the
PDPC simulator, these parameters are constant. Approach parameters itemize terms
defined in Appendix A.

B.4.2. Decreasing Parameters. Decreasing parameters are low-level details that
decrease over the time period of a mission. For example, aircraft decrease in weight as a
mission progresses and fuel is used. Weight contributes to key dynamic parameters.

B.4.3. Dynamic Parameters. Dynamic parameters are low-level details

controlled by a pilot within some range of operation. Each parameter indicates an aspect
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of the current state of an aircraft. Some parameters are defined as part of (p/o) a class

siot. In these cases several parameters compose a multifield slot.

Table B.1. Aircraft Performance Parameters.

PARAMETER DESCRIPTION DEFINED AS
Aircraft Type Type of aircraft e.g. F-15 class slot "type-of”
Max-Roll Highest degree of roll continuous range
Max-Roll-Rate Defines maximum change in roll phase constant
Max-Pitch Highest degree of pitch continuous range
Max-Pitch-Rate Defines maximum change in pitch phase constant
Max-Yaw Highest degree of yaw continuous range
Max-Yaw-Rate Defines tightest "flat" turn phase constant
Min-Turn-Radius Defines tightest turn not defined
Max-Angle-of-Attack Max nose-up from direction vector not defined
Max-Speed Fastest in level flight global constant
Max-Altitude Highest in level flight global constant
Cornering-Speed Critical-Velocity @ Max-Aircraft-G not defined
Max-Aircraft-G Structural limitation. not defined
Max-Pilot-G Limitation of the pilot not defined
Gravity-G Force of gravity, 9.8 m/s? global constant
Table B.2. Approach Parameters.
PARAMETER DESCRIPTION DEFINED A_
Forward-Hemisphere Centered on the nose axis +/- (1/2)
Rear-Hemisphere Centered on, but opposite the nose axis +/- (/2)
Hot-Side Centered on the apex axis +/- (/2)
Cold-Side Centered on, but opposite the apex axis +/- (1/2)
Left-Side Centered on the wing axis +/- (n/2)
Right-Side Centered on, but opposite the wing axis +/- (W/2)
Forward-Quarter Centered on the nose vector +/- (/4)
Rear-Quarter Centered on the negative nose vector +/- (1/4)
Overhead-Quarter Centered on the apex axis +/- (1/4)
Underside-Quarter Centered on the negative apex axis +/- (1/4)
Left-Beam-Quarter Centered on the wing vector +/- (m/4)
Right-Beam-Quarter Centered on the negative wing vector +/- (T/4)
Upper-Left-Quadrant Bounded by +nose, +wing, +apex axes not defined
Upper-Right-Quadrant | Bounded by +nose, -wing, +apex axes not defined
Lower-Left-Quadrant Bounded by +nose, +wing, -apex axes not defined
Lower-Right-Quadrant | Bounded by +nose, -wing, -apex axes not defined
Right-Shoulder-Quadrant | Bounded by -nose, +wing, +apex axes not defined
Left-Shoulder-Quadrant | Bounded by -nose, -wing, +apex axes not defined
Left-Tail-Quadrant Bounded by -nose, +wing, -apex axes not defined
Right-Tail-Quadrant Bounded by -nose, -wing, -apex axes not defined
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Table B.3. Decreasing Parameters.

PARAMETER DESCRIPTION DEFINED AS
Fuel Amount remaining class slot "fuel”
Weight Aircraft weight class slot "mass"
Endurance Defines limitations of the pilot not defined
IR-Missiles Infra-red guided missiles not defined
Radar-Missiles Radar guided missiles class slot "missile-load"
Laser-Missiles Laser guided missiles not defined
Rounds Bullets not defined
Gravity-Bombs Drop bombs not defined
Laser-Guided-Bombs Smart bombs not defined
Cluster-Bombs Scatter bombs not defined
Table B.4. Dynamic Parameters.

PARAMETER DESCRIPTION DEFINED AS
Altitude Height or flight level p/o class slot "location”
Speed Scalar (e.g. mach, mph, KTAS, KIAS) function "speed"
Direction Vector indicating direction of travel (bank, climb, | class slot "orientation"

heading angles)
Velocity Vector indicating speed and direction (dx, dy, dz) | class slot "velocity"
Acceleration Vector indicating change in velocity class slot "abc-acceleration”
Location Position on a grid representing sim-space (X,y,z) class slot "location”
Position World coordinates (latitude, longitude, altitude) not defined
Attitude
Roll Angle of apex vector from nose-z plane p/o class slot "abc-attitude"”
Pitch Angle of nose vector from wing-nose plane p/o class slot "abc-attitude”
Yaw Angle of nose vector from nose-apex plane p/o class slot "abc-attitude”
Angle-of-Attack Angle of nose vector from velocity-wing-plane not defined
Forces
Lift Acceleration along apex vector not defined
Gravity-G Acceleration along negative z vector lobal constant
Thrust Acceleration forward along nose vector class slot "abc-thrust"
Drag Acceleration backward along negative nose vector | not defined
Radial-G Acceleration toward a focal point not defined
Turn-Rate Rate of change in velocity vector not defined
Turn-Radius Distance from a focal point not defined
Specific-Energy See formula below rule "specific-energy"
Excess-Power See formula below rule "excess-power"

B.4.3.1. Specific Energy. Shaw identifies two critical parameters in air

combat maneuvering: specific energy and excess nower (Shaw, 1985:394). The specific
energy indicates maneuver capability and is key to determining if an aircraft should adopt

the "energy"” or "angles" fighter strategy. Specific energy, E, depends on altitude, speed,

and gravity as defined in the following equation:

B-4




Speed*

_— B.1)
2-Gravity-G

E, = Altitude +

where G is the radial acceleration induced on the aircraft due to maneuvering.

B.4.3.1. Excess Power. The second of Shaw's key parameters, excess power
indicates climb performance. Although a fighter may not have an explicit energy
advantage, excess power indicates the ability to gain an advantage. Excess power, Pg,
depends on velocity, thrust, drag, and aircraft weight:

Thrust - Drag

Ps = Velocity -
Weight

(B.2)

In the PDPC simulation, drag is ignored.

B.4.4. Relative Parameters. The relation between two aircraft dictates tactics and
maneuvers and play the critical role in firing decisions. Relative parameters define the
relationship between twe maneuvering opponents.

Three types of envzlopes define air combat maneuvering. The visual envelope
describes the physical position of one aircraft with respect to another. The maneuvering
envelope describes lirniting factors so that a pilot can choose between different maneuv. <.
The firing envelope imposes further limitations, but the choice is whether to fire or not.

Parameters were weighed and used differently within different PDPC phase modules.

Table B.5. Visual Envelope.

PARAMETER DESCRIPTION DEFINED AS
Line-of-Sight (LOS) Vector from aircraft to target locations function "line-of-sight"
LOS-Rate Angular change in line-of-sight vector function "LOS-rate”
Angle-Off-Tail Difference between LOS and target tail vector function "angle-off-the-tail"
Angle-Off-Nose Difference between LOS and target nose vector | function "angle-off-the-
nose"
Target-Aspect-Angle Acute angle between LOS and target velocity function "target-aspect-
vector angle”
Target-Velocity-Vector | Estimate of target speed and direction class slot "velocity"
Target-Attitude Estimate of target roll, pitch and yaw class slot "orientation"
B-5




Table B.6. Maneuvering Envelope.

PARAMETER DESCRIPTION DEFINED AS
Target-Specific-Energy | Estimate of capabilities rule

| Target-Excess-Power | Estimate of potential rule

Predicted-Location Estimate of target path functions; class HISTORY
Maneuver-to-Execute Result of deliberation rules

Target-Maneuver Estimate of target intentions rules

Closure-Rate Difference between velocity vectors function
Track-Crossing-Angle | Angle between velocity vectors function

Location Coordinates in X, y, z space class slot "location”
Separation Radial distance from nose vector function )

Table B.7. Firing Envelope.

PARAMETER DESCRIPTION DEFINED AS
Range Distance to target in xy-plane function
Distance Distance to target along line-of-sight function
Lookup Positive nose vector angle with Earth plane not defined
Lookdown Negative nose vector angle with Earth plane not defined
Counterflow Angle between velocity vectors >= 90 degrees not defined
Inflow Angle between velocity vectors < 90 degrees not defined
Time-of-Flight Estimate of time for weapon to reach target not defined

B.4.5. Basic Maneuvers. Basic maneuvers constitute the minimum elements of

controlled flight. Simple maneuvering is embedded within rules in each phase module.

Table B.8. Basic Maneuvers.

PARAMETER | DESCRIPTION DEFINED AS
Level-Upright All orientation angles equal zero. rules
Level-Inverted | Level flight at a bank angle (roll) of precisely T or -x. Other rules
orientation angles equal zero.
Level-Rolled Leve] flight at a bank angle between T and -1, but not zero. rules
Climb Positive dz value rules
Dive Negative dz value rules
Roll-Left Rotate aircraft clockwise about nose axis rules
Roll-Right Rotate aircraft counterclockwise about nose ‘<is rules
Pitch-Up Rotate aircraft clockwise about wing axis rules
Pitch-Down Rotate aircraft counterclockwise about wing axis rules
Yaw-Left Rotate aircraft counterclockwise about apex axis rules
Yaw-Right Rotate aircraft clockwise about apex axis rules
Turn-Left Roll-Left, Pitch-Up, Yaw-Right rules
Turn-Right Roll-Right, Pitch-Up, Yaw-Left rules
Break-Left Roll-Left-Max, Pitch-Up-Max, Yaw-Left rules
Break-Right Roll-Right-Max, Pitch-Up-Max, Yaw-Right rules
Accelerate Increase throttle rules
Decelerate Decrease throttle rules
Accelerate-Max | Increase throttle to 125% of maximum positive rules
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B.4.6. Composite Maneuvers. These maneuvers are composites of basic

maneuvers performed in a sequence. Composite maneuvers fall into one of five

categories: pursuit curves, attack rolls, attack turns, crossing maneuvers, vertical

maneuvers, and combination maneuvers. Composite maneuvers are defined in rules or

sets of rules. Mot all of the maneuvers defined here were implemented, but they are shown

here for completeness.

Pursuit curves ascribe a simpte curved flight path through three-space in the plane of

actack. Typically, the curve is directed toward a target or some point offset from a target.

The primary purpose is to close on a target in a way that brings the attacker into the rear

quarter of the target. Three types are lead-pursuit, pure-pursuit, and lag-pursuit.

Table B.5. Pursuit Curves.

TYPE | PRE-CONDITIONS | DESCRIPTION GOALS | DEFENSE
Lead- Fighter is inside Aim nose-vector ahead of target. Turn | Increase | Energy Fighter:
Pursuit | target's turn. with decreasing radius (increasing rate). | AOT & | Extend.
Avoid "blind" turns by using parallel closure Angles Fighter:
turn plane. Use proportional navigation Turn at Min-
course. Turn-Radius.
Pure- Equal fighter energy. | Aim nose-vector at target. Maintain
Pursuit AOT &
closure
Lag- Fighter is outside Aim nose-vector behind target Turn Decrease | Reverse with
Pursuit | target's turn. with increasing radius (decreasing rate). | AOT & | "impunity".
closure

Attack rolls are conducted out of the plane of attack and either maintain an

advantage or reverse a disadvantage. For example, lag rolls are used as an alternative to

slowing down. Barrel rolls and "yo-yo" maneuvers change a position disadvantage into a

position advantage. Five types of attack rolls are lag-roll, displacement-roll, barrel-roll,

high-yo-yo, and low-yo-yo.

Attack turns are conducted in the plane of attack, but use the target as a focus to

orbit rather than a point to fly toward. Attack turns depend on the response of the target.
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Table B.9. Attack Rolls.

TYPE PRE-CONDITIONS | DESCRIPTION GOALS DEFENSE
Lag-Roll | Imminent overshoot, |Increase lag angle. Reduce speed | Lag-Pursuit [ Extend dive
high closure, excess | by increasing altitude. Roll to with same
lead pursuit, medium | point apex at target. Decrease lag Roll-Angle
AOT (30~60 degrees) | angle.
Displace- | Close range, low AOT | Increase lag angle. Reduce speed | Increase Extend dive
.Jment-Roll | (0~30 degrees), low | by slowing down. Move to opposite | range with same
closure. side of target flight path. Decrease { Reduce AOT | Roll-Angle
lag angle.
Barrel- Forward-Hemisphere, | Wings level pull-up. Roll to point | Rear- Extend dive
Roli lead-pursuit, long apex toward target. When passing | Hemisphere, | with same
range. overhead, dive onto target using Lag-Pursuit | Roll-Angle
lead pursuit.
High-Yo- |Imminent overshoot, |Roll to Level-Upright. Climb. Roll | Lead: gun Attack-Turn
Yo low closure to place lift-vector ahead of target | snapshot.
(increasing), for lead-pursuit (GUNS), onto Lag: missile
Pure-Pursuit, medium | target for pure-pursuit, or behind | min-Range.
AOT (30~60 degrees) | target for lag-pursuit (MISSILES).
Low-Yo- |Long range, Hot-Side, | Nose-down toward inside of turn. | Decrease Attack-Turn
Yo Lag-Pursuit, high Roll to match turn rates. Climb AOT,
AOT (60~90 degrees) | back to target's altitude. increase
closure

For example, a nose-io-nose turn means both attacker and target turned in the same

direction and will pass again after 180 degrees of turn. A nose-to-tail turn means attacker

and target turned in opposite directions with one achieving a rear quarter advantage. Five

types of attack turns are lead-turn, nose-to-nose, nose-to-tail, turn-toward, and turn-away.

Table B.10. Attack Tums.

TYPE PRE-CONDITIONS [ DESCRIPTION GOAL DEFENSE
Lead-Turn | Forward-Hemisphere | Level-upright until passing (beam | Rear- Attack-Roll

with separation of quarter) then turn toward target. Hemisphere

one min-turn-radius.

Not Energy-Fighter.
Nose-to- | Angles Fighter. Turn away from target until target | Rear-Quarter | Attack-Roll
Nose Target Lead-Turn. overshoots. Then turn toward

target.

Nose-to- | Energy Fighter. Turn toward target and prevent Inside turn, | Attack-Roll
Tail Target Lead-Tum. target overshoot. Flat Scissors.
Turn- None Point nose vector at target. Nose =LOS | Turn-Away
Toward
Turn- None Point nose vector away from target. | Nose =-LOS | Turn-Toward
Away
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Crossing maneuvers describe dynamic and dangerous situations. For example, a flat-
scissors maneuver is a repeated sequence of nose-to-nose turns with direction reversals on
each pass. The goal is to achieve a rear-quarter posture by staying slow and
maneuverable. The danger is that so is the opponent. Whoever can fly slowest without
stalling wins: Another crossing maneuver is a downward spiral. Opponents barrel-roll
around each other, but the general direction of the maneuver is toward the ground.

Whoever pulls out first loses the advantage, but not necessarily the engagement.

Table B.11. Crossing Maneuvers.

TYPE PRE-CONDITIONS | DESCRIPTION GOAL DEFENSE
Counter- | Nose-To-Nose Fighter turn-rate @ equal but Turn min- Attack-Roll
flow opposite target turn rate. turn-radius
In-flow Nose-To-Tail Fighter turn-rate @ equal target Turn min- Attack-Roll
turn rate. tern-radius
Flat- Angles Fighter, Nose-to-nose ==> Reversal ==> Rear- vertical
Scissors Nose-To-Nose, same | Lead-Turmn ==> Repeat Quarter maneuver or
maneuver plane. extend run
with turn
toward.
Rolling- | Energy Fighter, Barrel-Roll ==> Repeat Rear-
Scissors Nose-To-Nose, high Quarter, but
track-crossing-angle. hold energy
advantage
Spiral- Angles Fighter, Vertical Rolling-Scissors Rear- Extend-Dive
Down Nose-To-Tail Quarter
Spiral-Up | Energy Fighter, Vertical Rolling-Scissors Rear- Extend-
Nose-To-Tail Quarter climb

Vertical maneuvers describe pursuit curves and attack turns in the z-plane. The
primary goal of vertical maneuvers is to gain either energy or speed. Climb maneuvers
increase specific energy, but decrease excess power. Dive maneuvers increase both
specific energy and excess power, but can only be conducted for short time periods. Both
types require periods of straight flight and may cause a position disadvantage.

Combination maneuvers depend heavily on the position of an opponent and typically
implies the opponent has an advantage. For example, a reversal indicates the opponent is

executing a maneuver that the attacker cannot follow. A jinking maneuver is executed

B-9




i

when the attacker crosses in front of an opponent. All combination maneuvers involve

movement away from an opponent rather than toward.

Table B.12. Vertical Maneuvers.

TYPE PRE-CONDITIONS | DESCRIPTION GOAL DEFENSE
Oblique- | Level-Upright, below | Increase pitch to optimum climb Gain energy
Climb max-altitude angle, roll left/right tc induce wi/o losing
lateral motion, accelerate position.
Zoom- Oblique-Climb, Increase pitch to optimum climb Gain
Climb below max-altitude angle for altitude, Max-Accelerate | energy.
Steep- Zoom-Climb, below | Increase pitch to maximum climb | Gain
Climb max-altitude angle for altitude, Max-Accelerate | altitude.
Oblique- | Level-Upright, above | Decrease pitch to optimum dive Gain speed
Dive Ground-Level angle, roll left/right to induce w/o losing
lateral motion, Max-Accelerate  position
Zoom- Oblique-Dive, above | Decrease pitch to optimum dive Gain speed.
Dive Ground-Level angle for altitude, Max-Accelerate
Steep- Level-Upright, above | Decrease pitch to maximum dive | Max speed
Dive Ground-Level angle for altitude, Max-Accelerate | gain.
Table B.13. Combination Maneuvers.
TYPE PRE-CONDITIONS | DESCRIPTION GOAL DEFENSE
Reversal | Give-Rear-Quarter, | Roll to negative bank angle and go | Increase
' tight turn, high bank | the opposite direction. Give-AOT
angle (45~90 degree) and distance
Jink Give-Snapshot is Pitch-down or pitch-up, then Avoid
imminent (nose return after overshoot. snapshot
overshoot)
Oblique- | Level-Upright Turn-Toward or Turn-Away with | Lag-Pursuit,
Turn altitude change (vertical & lateral | Rear-
combined) Quarter
Extend- Target not in rear Turn-Toward, Max-Acceleraw, Increase
Run quarter. increase Lag-Angle distance.

B.5.7. Targeting Goals. Targeting goals indicate incremental gains over an
adversary. I established this sequence as a way of gauging advantage or disadvantage.

Parameters are not explicitly defined, but appear as parts of rules and rule sets.




Table B.14. Advantage Targeting Goals (In Precedence Order).

GOAL DESCRIPTION DEFINED AS
Missile-Lock Target acquired _plo ule
Tracking-Shot Target crossing speed near zero plo rule
Snap-Shot Target crossing speed near maximum plo rule
Lethal-Range Min-Range < Range < Max-Range p/o rule
Overshoot-Tail Fighter overshoots target tail vector plorule
Rear-Quarter Fighter is within 45 degrees of target tail vector p/o rule
Rear-Hemisphere Fighter is within 90 degrees of target tail vector p/o rule
Underside-Quarter Fighter is within 45 degrees of target -apex axis plo rule
Cold-Side Fighter is within 90 degrees of target -apex axis p/o rule
Beam-Quarter Fighter is within 45 degrees of target wing axis p/o rule
Beam-Hemisphere Fighter is within 90 degrees of target wing axis p/o rule
Hot-Side Fighter is within 90 degrces of target apex axis p/orule
Overhead-Quarter Fighter is within 45 degrees of target apex axis plo rule
Forward-Hemisphere | Fighter is within 90 degrees of target nose axis /o rule
Forward-Quarter Fighter is within 45 degrees of target nose axis - p/o rule

Table B.15. Disadvantage Targeting Goals (In Precedence Order).

GOAL DESCRIPTION DEFINED AS
Give-Forward-Quarter | Target is within 45 degrees of Fighter nose axis p/o rule
Give-Forward- Target is within 90 degrees of Fighter nose axis p/o rule
Hemisphere

Give-Overhead-Quarter | Target is within 45 degrees of Fighter apex axis p/o rule
Give-Hot-Side Target is within 90 degrees of Fighter apex axis p/o rule
Give-Beam- Target is within 90 degrees of Fighter wing axis p/o rule
Hemisphere

Give-Beam-Quarter Target is within 45 degrees of Fighter wing axis p/o rule
Give-Cold-Side Target is within 90 degrees of Fighter -apex axis p/o rule
Give-Underside- Target is within 45 degrees of Fighter -apex axis plorule
Quarter

Give-Rear-Hemisphere | Target is within 90 degrees of Fighter tail vector p/o rule
Give-Rear-Quarter Target is within 45 degrees of Fighter tail vector p/o rule
Give-Overshoot-Tail Target overshoots Fighter tail vector plorule
Give-Lethal-Range Target-Min-Range < Range < Target-Max-Range plo rule
Give-Snap-Shot Fighter crossing speed near maximum p/o rule
Give-Tracking-Shot Fighter crossing speed near zero p/o rule
Give-Missile-Lock Fighter acquired p/o rule

B.5.8. Tactical Decisions. These parameters form the basis of the PDPC phase
control architecture. Tactical decisions are based on decision and maneuver rules. As an
architecture, entering one set of rules implies information and events occurred to require a

decision. For example, firing on a target implies the target was hostile, entered protected
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airspace, constituted a threat, was pursued, engaged in combat, and came into the firing
envelope of the attacker. All of the information leading to a firing decision is moot once
the missile is launched. So, each tactical decision requirement was implemented as a phase

module with transitions between modules implying a decision was made.

Table B.16. Tactical Decisions.

PARAMETER | DESCRIPTION DEFINED AS
New-Mission Mission, leader, and followers assigned Phase module
Launch Take off from airfield Phase module
Cruise Move from point to point Phase module
Search Locate other aircraft Phase module
Identify Determine target relationship Phase module
Chase Pursue to border Phase module
Pursuit Pursue beyond border Phase module
cngage Seek position advantage through maneuvering Phase module
Acquire Lock on target Phase module
Fire Release weapon Phase module
Analyze Measure result of weapon use Phase module
Breakoff Break away due to counter-maneuver Phase module
Avoid Break away due to counter-attack Phase module
Disengage Break away to address new target Phase module
Evade Avoid confrontation because of mission Phase module
Retreat Break away t0 address new mission Phase module
Refuel Break away to address low fuel alarm Phase module
Recall Return to base Phase module
Landing Exzcute a landing at a base Phase module

B.5.9. Strategic Decisions. Tables B.17 through B.26 define strategy options for
PDPC agents. Mission assignment, planning and tactical coordination identify specific
strategy options. T:.cles B.20 through B26 are derived from the Titan report (Titan,

1986) and provide base definitions for decisions modules.

Table B.17. Mission Assignment.

| PARAMETER | DESCRIPTION DEFINED AS

CAP-station Fly oval pattern along "threat” axis. class slot value

Patrol Fly linear pattern along defined boundaries. class siot value

Assault 'y direct to target. Egress cut the back side. not defined

Sweep Feign assault on collateral target, then attack not defined
primary from flank.
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Table B.18. Planning.

PARAMETER [ DESCRIPTION DEFINED AS
Phase-Plan Defines default sequence through phase modules. | class
Route-Plan Defines waypoint sequence for pre-planned routes | class
Intercept-Plan | Defines waypoint sequence for un-planned routes. | class
Bingo-Plan Defines waypoint sequence to refueling stations. class
Ingress-Plan Scenario file for assault not defined
Egress-Plan Scenario file for assault not defined
Table B.19. Tactical Coordination.
PARAMETER [ DESCRIPTION DEFINED AS
Solo Single fighter attacks target class slot value
Fighting-Wing | Lead fighter attacks target. Partner follows. class slot value
Dual-Attack Lead fighter attacks target. Partner stays out. class slot value
Loose-Deuce First fighter attacks, then second. Alternate. class slot value

Table B.20. Pre-Engagement Strategy Decisions.

PARAMETER DESCRIPTION DEFINED AS
Radar-Check Select radar mode rules

Commitment Declares when to engage ules
Correlate-Target Compare target data with partners rules & slot values
Guess-Intent Decide who a target will attack rules & slot values
Estimate-Threat Attach a value to a target rules & slot values
Call-For-Support Get help before engaging rules
Assign-Priority Attach numeric value to a target rules & slot values

Table B.21. Engagement Strategy Decisions.

PARAMETER DESCRIPTION DEFINED AS
Determine-Approach | Select a direction to approach a target rules & slot value
Supporting-Role Select tactical coordination method rules & slot value
Formation Select an attack formation rules & slot value
Energy-Advantage | Advantage due to speed and/or altitude. | not defined
Energy-Fighter Declares energy advantage. rule
Angies-Fighter Declares energy disadvantage rule

One-on-One Use one versus one taciics not defined
One-on-Two Use one versus two tactics not defined
Two-on-Cne Use two versus one tactics not defined
Two-on-Two Use two versus two tactics not defined
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Table B.22. Intercept Geometry.

PARAMETER

DESCRIPTION

DEFINED AS

Entry-Point

Define the first waypoint in a plan

lan slot value

Intermediate-Point

Define waypoints between entry-point and intercept-point

lan siot value

Intercept-Point

Define expected rendezvous

lan slot value

Free-Fire-Area

Define points to avoid

object instance

Ingress-Altitude

Define the altitude to use during a plan

rujes & slot value

Ingress-Airspeed Define the altitude to use during a plan rules & slot value
Egress-Altitude Define the altitude to use during a plan rules & slot value
| Egress-Airspeed Define the altitude to use during a plan rules & slot value
Create-Plan Make an instance of a plan rule
Update-Plan Update the information in a plan method
Table B.23. Evasion Tactics.

PARAMFETER | DESCRIPTION DEFINED AS

Evade-Ground- | Use path around or under opposing capability, e.g. | Intercept-

Site radar-site, SAM-site, etc. Trajectory rules

Evade-Aircraft | Conduct mission without detection Evade phase

Evade-Missile | Hard maneuvering to avoid being shot down Avoid phase

Table B.24. Weapons Employment.
PARAMETER DESCRIPTION DEFINED AS
Discriminate-Targets | Distinguish individual targets in a group rule
Assign-Target Assign a target to attack rule
Assign-Goal If not a target, then determine what partner should do rules
Modify-Orbit Keep partner aircraft near an engagement rule
Engage-Criteria Decide whether to engzage a target rules
Abort-Criteria Decide whether not to engage a target rules
Activate-Weapon Arm a missile rule
Deactivate-Weapon Disarm a missile rule
Reactivate-Weapon Rearm a disarmed missile rule
Lock-Radar Decide to commit radar to fire control rules
Launch-Envelope Determine the bearing and range to launch a missile rule
Table B.25. Counter-Action Strategy.
PARAMETER DESCRIPTION DEFINED AS
Counter-Jamming Determine how to counter communications jamming rule
Counter-Maneuver Determine what maneuver to use against an opponent's not defined
maneuver

Missile-Defenst Determine what maneuver to use against a missile attack | Avoid phase
Throttle-Setting Determine a throttle setting before intercept point not defined
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Table B.26. Post Engagement Strategy.

PARAMETER DESCRIPTION DEFINED AS
Next-Missile Decide whether another missile should be armed not-defined
Disengage-Criteria Decide whether to re-attack or disengage engage criteria
Post-Missile-Launch | Decide maneuver to execute after launching a missile not-defined
Post-Missile-Miss Decide maneuver to execute if the missile misses the target | not-defined
Disengage Determine how to disengage Disengage phase
Retreat Determine direction to disengage Retreat phase

B.5.10. Information Gathering. These parameters indicate raw data collected
during each mission. Specific parameters may. or may not, be used in an engagement.
The major categories of information gathering include intelligence, communications,
counter-measures, and environment data.

Intelligence information characterizes threats and expected threats. In real combat,
data could be pre-loaded. In PDPC simulations, only some intelligence data is pre-loaded.
Known fixed threat locations, such as opponent bases and surface-to-air missile sites, are
established as instances of the STATION class. Unknown threats are defined when they
come within radar range.

Communications systems include radio and radar capabilities. Counter-measure
systems include chaff and flare systems and rules to counter radio jamming signals.

Environment information describes weather and terrain conditions.

Table B.27. Intelligence Information.

PARAMETER DESCRIPTION DEFINED AS
Threat-Environment Defines specific expected threat, e.g. SAMs class slot "type-of”
Threat-Type Guns, rear quarter missile, or all aspect missile | class slot "type-of"
Threat-Location Define opposing target in x, y, z space not defined
Threat-Source Launch platform not defined
Target-Thrust-to-Weight | Estimate of capability beyond own capability not defined

Target-Name Identify opposing targets class slot "target-name”
Target-Status Detected, assigned, destroyed, etc. class slot "target-status”
Target-Victim Assume where the target intends to go class slot "target-victim"
Victim-Location Define the location in x, y, z space class slot "victim-location"
Target-Threat Estimate of potential damage threat poses class slot "target-threat”
Target-Priority Importance of target. Highest priority first. class slot "target-priority"

B-15




Table B.28. Communications.

PARAMETER DESCRIPTION DEFINED AS

Radio Pass message traffic between aircraft class slots "radio-status"”,
"radio-mode", and "radio-
channel” and template
"message"”

Radar Provide target location and velocity data class slots "radar-status”,
and "radar-mode"

RWR-Warning Incoming missile warning signal rule

Table B.29. Counter Measures.

PARAMETER DESCRIPTION DEFINED AS

Chaff Missile defense system not defined

Flare Missile defense system not defined

Jamming Electronic counter measure rule and class slot

Table B.30. Environment Information.

PARAMETER DESCRIPTION DEFINED Ao

Weather Specific conditions within 10 mile radius not defined

Wind-Speed Average speed fact "wind-velocity"

Wind-Direction Average direction fact "wind-velocity"

Wind-Velocity Average speed and direction vector fact "wind-velocity"

Wind-Gusts random velocity fluctuations not defined

Rain Describes precipitation vardable not defined

Cloud-Cover Describes environment variable not defined

Cloud-Ceiling Describes environment variable not defined

Cloud-Tops Describes environment variable not defined

Visibility Distance that can be seen below cloud cload-ceiling not defined

Terrain Specific conditions within 10 mile radius not defined

Ground-Level Describes minimum flight level not defined

Ground-Variation Describes average variation in ground level not defined

Ground-Excursions | Describes mountains and valleys not defined

B.5.11. Mission Purpose. A statement of mission purpose identifies primary

operating modes. For example, Air Superiority implies aircraft search for opposing

targets over the leading edge of the battlefield and all opposing aircraft are targeted and

attacked. Defensive doctrine implies opponent aircraft are chased, but not necessarily

destroyed. In a defensive role, distance from a defended area must be “veighed against

distance to a potential target.
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B.5.12. Mission Planning Mission plans provide specifics in terms of primary

mission, targets, units involved and the most current information on intelligence,

communications and other aspects of the threat environment. The PDPC simulator does

not provide a specific mission plan, but does provide mission planning information.

Table B.31. Mission Purpose.

PARAMETER

DESCRIPTION

DEFINED AS

Air-Superiority

Destroy airborne opposing aircraft over battlefield

slot value: "superiority"

| Defensive-Counterair

Destroy airborne opposing aircraft over airfield

slot value: "defense"

Fighter-Sweep

Destroy all opposing aircraft

not defined

Oftensive-Counterair

Destroy grounded opposing aircraft

slot value: "offense”

Area-Defense Patrol an own-side area and search for targets slot value: "defense”
Air-Interdiction Attack strategic targets, air and non-air not defined
Strike-Escort Protect own-side airborne elements not defined
Close-Air-Support Protect own-side ground elements not defined
Reconnaissance Search for strategic ground targets not defined
Support Electronic warfare, AWACSs, communications, etc. | not defined
Transpori Cargo airlift not defined
Table B.32. Mission Planning Parameters.

( PARAMETER DESCRIPTION DEFINED AS
Mission-Purpose | Defines primary mission. class slot: "mission”
Target Defines primary and secondary targets. class slot: "target-name”
Participants Defines friendly, opposing, and team-mates class
Intelligence Describes expected types of air and ground threats not defined
Communications | Defines call signs of local and global elements AWAGCs
Weapons-Load Defines available firepower options class slot: "missile-load"
Terrain Helps in route planning Route-Plan
Leading-Edge-of- | Describes when to expect opposing threats fact: "border"
Battlefield
Weather Describes difficulty in route or combat maneuvers not-defined
Route-Plan Primary ingress and egress routes class slot: "plan”
Alternate-Routes | In case of emergency not defined

B.5.13. Operations Orders. These requirements provide general guidance in

single scenarios. In the PDPC simulator, operations orders are not specifically defined

except for a rule in New-Mission phase that makes assignments depending on mission

purpose.
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Table B.33. Operations Orders.

PARAMETER

DESCRIPTION

DEFINED AS

Assign-Mission

Determine a mission assignment depending
on a given mission.

New-Mission phase rule

Execute-Mission

Defined by mission, assignment, plan, and
circumstances.

Pre-Engagement module,
"commitment” checks

Abort-Mission

Defined by mission, assignment, plan, and
circumstances.

Weapons-Employment module,
"engage-criteria” checks

B.5.14. Directives. These requirements provide very high level guidance valid in

many several scenarios. Its purpose is to allow coordination of adjacent missions (at least

at the top level) and implement a chain-of-command. In the PDPC simulator, chain-of-

command is pre-loaded and rules to either execute or abort a plan depend on the current

phase. An overall "recall" rule aborts all plans after a preset time limit

Table B.34. Direciives.

PARAMETER DESCRIPTION DEFINED AS

Execute-Plan Choose an action from a pre-set plan Depends on current phase and
current plan.

Abort-Plan Change plans from one currently executing to | Depends on current phase and

a default plan

current plan.

B.5.15. Doctrine. AFM 1-1, Basic Aerospace Doctrine, lists eleven principles of

war that should be achieved as a prelude to combat.

Table B.35. Doctrine.

PARAMETER DESCRIPTION DEFINED AS

Offensive Act rather than react Pursuit versus evade phase rules

Security Protect own-side elements from surprise Counter-Action module,
"cooperative-rules” check

Surprise Act at time and place unexpected not defined

Objective Defines intentions to act upon Pre-Engagement module
"target-data" checks

Timing-and-Tempo | Optimizes use of friendly forces Engage phase rules

Mass-Vs-Economy | Balanced to address primary objectives not defined

Maneuver Movement in relation to opposing forces Engagement-Strategy module,

"strategy" checks

Unity-of-Command

Dictates coordinated effort

class slots: "leader-of” and
"follower-of"

Cohesion

Coordinated rather than disjointed

not defined

Logistics

Defines adequate supplies

not defined
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B.6. Summary.

This appendix is a dictionary of key terms used in the PDPC simulator. Air combat
maneuvering parameters and concepts were encoded as constructs. A construct may have
the form of a rule, set of rules, class, class slot, ciass slot value, or simply as a fact for
general consumption. Not all parameters and concepts were actually coded, but all are

listed in this appendix for completeness.

B-19




Appendix C. Pilot Situation Awareness

C.1. Introduction.

This appendix lists a series of questions measuring a pilot's awareness of combat situations. They
are taken from an idea given to me by Amburn who conducted a study measuring pilot situation
assessment (Amburn, 1993). His study attempted to identify the merits of using virtual reality goggles
versus computer monitor displays. I used the idea of a questionnaire to elaborate the decision process
used by pilots. The questionnaire below itemizes potential questions used by pilots entering a combat
situation. Questions and their answers are derived from information and explanations contained in the

Shaw text and Titan report. Each question is phrased to keep answers as simple as possible.

C.2. Questionnaire.

1. What am I doing here? (What mode am I in?)

Answers:
New-Mission Intercept Fire Evade
Launch Chase Analyze Retreat
Cruise Pursue Breakoff Refuel
Search Engage Avoid Recall
Identify Acquire Disengage Landing

2. Where's the bogey?
Answers: Over there. - Causes a tactical decision sequence:
identify, intercept, pursue, engage, acquire, fire, analyze.
No where. - Causes continuation of search or cruise phase.

3. Is the target really a bogey?

Answer: Yes. I've identified the target as hostile enemy.
Maybe. Ihaven't identified the target, yet.
Maybe not. I've identified the target as neutral or civilian.
No. I've identified the target as friendly (same side).




4. Has he seen me?

Answers: Yes. The bogey is maneuvering hard right toward me.
Maybe. The bogey is maneuvering hard, but not directly toward me.
Maybe not. The bogey is maneuvering easy.
No. 'fThe bogey is still flying straight and level.

5. Is the bogey's radar on? .
Answers: Yes. The bogey is actively searching.
No. The bogey is not searching.

6. Is the bogey's radar locked onto me?
Answers: Yes. I'm in trouble.
No. I'm still undetected.

7. Has he fired a weapon at me?
Answers: Yes. Take evasive action.
No. He's maneuvering into position.

8. How much fuel do I have left?

Answers: Plenty. Enough for prolonged engagement.
Enough. More than half remaining with less than half the mission done.
Not Enough. Less than half remaining with more than half the mission done.
Panic. Only enough to return to base.

9. What weapons do I have left?

Answers: All of my missiles and all of my guns.
Missiles (all, >half, half, <half, none), and/or Guns (all, >half, half, <half, none)
None of my missiles and none of my bullets for guns.

10. Am Iinjured to the point it affects my ability?

Answers: Yes. I cannot properly control the aircraft.
Maybe. 1 have partial control of the aircraft, but my is reduced.
Maybe not. I can control the aircraft, but my endurance has weakened.
No. Iam fully functional.

11. Can I shoot him down now?
Answers: Yes. The bogey is within the range and firing envelope of my weapon.
Weapon choice is one of:
All-aspect missile {long, medium, or short range}
Rear quarter missile {medium or short range}
Guns {short range}
Maybe. I could simply "fire for effect”.
No. I'll have to maneuver to get into firing position.
No. Idon't have any weapons left.




12. Can I maneuver into a better firing position?

Answers: Yes. Execute a maneuver toward the bogey for best effect.
No. Execute a maneuver around the bogey until a better opportunity exists.
No. Idon't have enough fuel left. Go into Withdraw or Escape mode

13. Is the bogey in my front or rear hemisphere?
Answers: Front hemisphere.
Rear hemisphere.

14. Is the bogey moving toward or away from me.?
Answers: Toward.
Away.
Neither. The bogey is moving across my field of view.

15. How many bogeys are there?
Answers: One.

Two.

Three.

Four.

Gaggle.

16. How many fighters are we?
Answers: One.

Two.
Three.
Four.
Gaggle.
17. Measure the following parameters.
Us Them Advantage
(-
Altitude feet feet
Speed knots knots
Direction (X,y,Z) (X,y,Z)
Thrust lbs lbs
Weight lbs lbs
Drag lbs lbs

18. Who has the higher "specific energy"?
Answers: Us. Be the "energy" fighter.
Them. Be the "angles"” fighter.

19. Who has the higher "excess power"?
Answers: Us. Be the "energy" fighter.
Them. Accelerate and try to be the "energy" fighter.
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20. What is the best strategy to employ?
Answers: Energy fight.
Angles fight.

21. What is the best tactic to employ?
Answers: Opening.

Mid-game.

Transition game.

End game.

22. What is the best attitude to take?

Answers: Panic. I'm hit and going down.
Hard. I'm under missile attack and at a disadvantage.
Aggressive. I'm under attack, but not at a disadvantage.
Firm. I'm not under attack, but I mus: maintain an advantage.

Easy. I'm not under attack, but I must act on the first opportunity.

23. What is the best maneuver to make?
Answers depend on strategy, tactic, and attitude employed.

24, How are the bogeys employing toward me?
Answers: Fighting wing.

Double Attack.

Loose Deuce.

25. How can I best employ toward the bogeys?
Answers: Fighting wing.

Doubie Attack.

Loose Deuce.

26. What doctrine should we employ?
Answers: Fighting Wing.

Double Attack.

Loose Deuce.

Task Assignment.

Solo.

27. Where is the ground? (How high are we flying?)
Answers: We're at high altitude.

We're at medium altitude.

We're at low altitude.

We're at tree-top level.

We're at sea-level.

There's a mountain (or other obstacle) over there.




28. Where are there any SAM sites to avoid?
Answers: Over there.
No where.

29. Is the SAM site's radar on?
Answers: Yes. Look for launching missiles.
No. Look for SAM sites.

30. Is the SAM sites radar locked?
Answers: Yes. Prepare for evasive maneuvers.
No. Maneuver away from the site.

31. Has a SAM been fired at me?
Answers: Yes. Take evasive action.
No. Keep watching out for it.

32. How's the weather?
Answers: Visibility unlimited.
Low-level clouds.
Mid-level clouds (maybe I can hide there).
High-level clouds.
Thunder clouds (at all levels).

33. Where did everybody (friendly) go?
Answers: The planned rendevous.
Over there (an unplanned rendevous).
Retreating. '
No where (they're all dead).

34. What's the best way out of here?
Answers: Combination of the following:
{Break Left, Break Right, Stay Straight}
{Dive, Climb, Stay Level}
{Extend, Stay at Speed}
{Stay with Plane, Eject}

C.3. Summary.

This appendix lists a series of questions measuring a pilot's awareness of combat situations. The intent

was to elaborate pilot situation awareness in terms both the reader and a computer programmer could

understand.




Appendix D. Class Slot Definitions

This appendix defines classes, subclasses and object slots for each class in the PDPC

simulator.
Table D.1. Player Class.

SLOT TYPE DEFINITION

name-of slot Symbeol uniquely identifying player

side slot One of "friendly"”, "enemy", or "neutral” to help players sort out
who is who.

Table D.2. Platform Class.
SLOT TYPE DEFINITION
hase slot The module of rules to activate for the player

state siot One of "moveable”, "move", or "moved" helps the simulator
decide which player to consider next. STATE also ensures each
player receives one move per cycle.

location multislot | (x,y,2) coordinates of a player's location in EGC space.

velocity multistot | (dx,dy,dz) player speed and direction in EGC spacs.

orientation multislot | (b,c,h) player bank, climb and heading angles in EGC space

goal slot Symboi identifying where a player should fly.

goal-location multislot | x, y, z coordinates of the goal.

desired-direction slot One of "1»ward" or "away" indicating whether a player wants to
approach or escape another player.

abc-velocity multislot | Indentifies aircraft velocity in the ABC frame.
(U, V, W) represents velocity in the nose, wing, and apex
directions.

abc-acceleration multislot | (dU,dV,dW) the rate of change in velocity relative to the ABC
frame.

abe-thrust multislot | Change in acceleration in thu ABC frame.
(F, G, H) represents thrust in the forward (nose), lateral (wing),
and vertical (apex) directions.

abc-attitude multislot | (R,S,T) roll, pitch, and yaw in the ABC frame

attitude-rate multislot | (dR,dS,dT) change in roll, pitch, and yaw in the ABC frame.

attitude-moment multislot | (mR,mS,mT) describes torque applied to aircraft body.

throttle slot A number to indicate whether the simulator should increase or
decrease a player's speed.

mass slot weight of the aircraft

on-the-ground slot boolean vilue indicating whether the aircraft is actually on the
ground (TRUE) or in the air (FALSE). If ca-the-ground s true,
gravity effects are cancelled.

fuel slot Describes how much fuel is left




Table D.3. Aircraft Class.

SLOT TYPE | DEFINITION
role slot One of "leader”, "follower", “solo", or "support" describes how
same side players interact.
leader-of slot For a leader, this slot comains the players on the team. For
other roles, this slot is "none".
follower-of slot Indicates who is the leader.
| mission slot One of "defense”, "offense"”, "superiority”, "escort”, or "testing".
assignment slot A statement of "patrol”, "CAP-station", or "flight-test" dictates
the initial plan to be used.
plan slot A plan name containing the waypoints to fly to and the order in
which to fly them.
condition slot Indicator of the pilot's status: "alive”, injured”, "dead".
missile-load slot The number of missiles a player owns
type-of slot One of "fighter”, "bomber", or "tanker" for aircraft.
number-of slot The number of aircraft within a target grouping.
tactical-coordination slot The way a follower aircraft behaves with respect to a leader.
One of: "patrol", "fighting-wing", "double-attack", or "loose-
deuce”.
formation slot Decsribes the formatior: a leader wants follwers to use. One of
"spread”, "echelon", "trail”, or "none".
approach slot Describes how an aircraft will approach a target. One of "head-
on", "side", "rear”, "above", or "below".
bearing-to-defensive-target | slot Bearing from a player to any ground site.
distance-to-defensive-target | slot Distance between player and any ground site,
kill-radius-of-defensive- slot Estimate of how far to go around the target.
target
maneuver slo* Identifies the maneuver selected to execute.
target-name multislot | A list of targets within radar range.
target-siatus multiclot | For each target, one of "detected", "correlated”, "assigned”,
"destroyed", "retreating"”, or "escaped”.
| target-victim multislot | An assumption who target aircraft intend to attack
victim-location multisiot | x, v, z coordinates of assumed victims
target-threat multislot | Threat level of targets. One of "high", "medium”, or "low" for
each target.
| target-priority multislot | Numerical assessment of threat.
radar-status slot One of "on", "off”, or "jammed"
radar-mode slot One of "search", "fire-control”, or "locked"
- IR-source-status slot One of "~n", or "off"
| IR-detector -status Jdot One of "on", "off", or "jammed"
radio-status | slot One of "un”, "off", or "jammed"
radio-channel sict The current channel number
radio-mode siot Nne of "receive” or "transmit”
radio-jammer-siatus siot One of "on", or "off"
radic-iammer-detector slot One of "on", or "off"
rada -jammer-status slot One of "on", or "off"
radar-jammer-detector slot Cne of "or", or "off"
_jamming-source-name siot A symbol indicating the source of jamming.
Jamuiing-sonrce-location slot X, 7, 2 coordinates of the jammer




Table D.4. Missile Class.

SLOT TYPE DEFINITION
missile-name slot A symbol identifying the missile
type-of slot Currently, only "sidewinder" available
number-of slot A number corresponding to the aircrait missile load
belongs-to slot The source of the missile
status slot Indicates the current state of a given missile. One of "inactive”,
"active", "armaed", "ready", "fire", "tracking", "missed”,
"detonzted”, or "expired”.
envelope multislot | Describes missile capability to reach a target. Expressed as min-
range, max-range, max-angle. Max-angle is the mximum AON
for firing.
kill-probability slot Defines probability that a missile will hit the target,
reliability slot Defines the probability that the missile will ignite and travel
toward the target.
Table D.5. Station Class.
SLOT TYPE DEFINITION )
type-of multislot | Describes the type of fixed station. One of "base", "tanker", or
"SAM-site".
location multislot | x,y,z coordinates of fixed station
orientation slot bank, climb, and heading angles used for aircraft approaches, such
as for landing.
Table D.6. History Class.
SLOT TYPE DEFINITION
belongs-to multisiot | Describes the type of fixed station. One of "base", "tanker", or
"SAM-site".
locations multislot | Last five x,y,z coordinates of given station

D-3




Glossary of Acronyms

ABC aircraft body coordinate (frame)

AFIT Air Force Institute of Technology

AOA angle of attack

AON angle off the nose

AOT angle off the tail

ARPA Advanced Research Projects Agency
CAP combat air patrol

CGF Computer Generated Forces

CLIPS C Language Integrated Production Syster
DIS Distributed Interactive Simulation
DMSO Defense Modeling and Simulation Office
EGC earth grid coordinate (frame)

IST Institute for Simulation and Training
LOS line of sight

PA Pilot's Associate

PDPC Pilot Decision Phases in CLIPS

SAF Semi-Automated Forces

TAA target aspect angle

TCA track crossing angle

TSS Task Support Subsystem

USAF United States Air Force
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